ledger/main.py
2008-04-13 02:41:02 -04:00

374 lines
11 KiB
Python

#!/usr/bin/env python
# Ledger, the command-line accounting tool
#
# Copyright (c) 2003-2004, New Artisans LLC. All rights reserved.
#
# This program is made available under the terms of the BSD Public
# License. See the LICENSE file included with the distribution for
# details and disclaimer.
#
# This script provides a Python front-end to the ledger library, and
# replicates the functionality of the C++ front-end, main.cc. It is
# provided as an example, and as a starting point for creating custom
# front-ends based on the Ledger module. See the documentation for an
# API reference, and how to use this module.
import os
import sys
import string
import time
true, false = 1, 0
from ledger import *
# Create the main journal object, into which all entries will be
# recorded. Once done, the 'journal' may be iterated to yield those
# entries, in the same order as which they appeared in the journal
# file.
journal = Journal ()
# This call registers all of the default command-line options that
# Ledger supports into the option handling mechanism. Skip this call
# if you wish to do all of your own processing -- in which case simply
# modify the 'config' object however you like.
add_config_option_handlers ()
averages = {}
compute_monthly_avg = false
def get_index (xact):
return time.strftime ("%Y/%m", time.localtime (xact.entry.date))
class ComputeMonthlyAvg (TransactionHandler):
def __call__ (self, xact):
global averages
index = get_index (xact)
if not averages.has_key(index):
averages[index] = [Value (), 0]
add_transaction_to (xact, averages[index][0])
averages[index][1] += 1
TransactionHandler.__call__ (self, xact)
def monthly_avg (details):
index = get_index (xact)
return averages[index][0] / averages[index][1]
def show_monthly_averages (arg):
global compute_monthly_avg
compute_monthly_avg = true
config.report_period = "monthly";
config.total_expr = "@monthly_avg()"
add_option_handler ("monthly-avg", "", show_monthly_averages)
# Process the command-line arguments, test whether caching should be
# enabled, and then process any option settings from the execution
# environment. Some historical environment variable names are also
# supported.
args = process_arguments (sys.argv[1:])
config.use_cache = not config.data_file
process_environment (os.environ, "LEDGER_")
if os.environ.has_key ("LEDGER"):
process_option ("file", os.getenv ("LEDGER"))
if os.environ.has_key ("PRICE_HIST"):
process_option ("price-db", os.getenv ("PRICE_HIST"))
if os.environ.has_key ("PRICE_EXP"):
process_option ("price-exp", os.getenv ("PRICE_EXP"))
# If no argument remain, then no command word was given. Report the
# default help text and exit.
if len (args) == 0:
option_help ()
sys.exit (0)
# The command word is in the first argument. Canonicalize it to a
# unique, simple form that the remaining code can use to find out
# which command was specified.
command = args.pop (0);
if command == "balance" or command == "bal" or command == "b":
command = "b"
elif command == "register" or command == "reg" or command == "r":
command = "r"
elif command == "print" or command == "p":
command = "p"
elif command == "output":
command = "w"
elif command == "emacs":
command = "x"
elif command == "xml":
command = "X"
elif command == "entry":
command = "e"
elif command == "equity":
command = "E"
elif command == "prices":
command = "P"
elif command == "pricesdb":
command = "D";
else:
print "Unrecognized command:", command
sys.exit (1)
# Create all the parser objects to be used. They are all registered,
# so that Ledger will try each one in turn whenever it is presented
# with a data file. They are attempted in reverse order to their
# registry. Note that Gnucash parsing is only available if the Ledger
# module was built with such support (which requires the xmlparse C
# library).
bin_parser = BinaryParser ()
gnucash_parser = None
xml_parser = None
try: xml_parser = GnucashParser ()
except: pass
try: gnucash_parser = GnucashParser ()
except: pass
try: ofx_parser = OfxParser ()
except: pass
qif_parser = QifParser ()
text_parser = TextualParser ()
register_parser (bin_parser)
if xml_parser:
register_parser (xml_parser)
if gnucash_parser:
register_parser (gnucash_parser)
if ofx_parser:
register_parser (ofx_parser)
register_parser (qif_parser)
register_parser (text_parser)
# Parse all entries from the user specified locations (found in
# 'config') into the journal object we created. The two parsers given
# as explicit arguments indicate: the parser to be used for standard
# input, and the parser to be used for cache files.
parse_ledger_data (journal, bin_parser)
# Now that everything has been correctly parsed (parse_ledger_data
# would have thrown an exception if not), we can take time to further
# process the configuration options. This changes the configuration a
# bit based on previous option settings, the command word, and the
# remaining arguments.
config.process_options (command, args);
# If the command is "e", use the method journal.derive_entry to create
# a brand new entry based on the arguments given.
new_entry = None
if command == "e":
new_entry = derive_new_entry (journal, args)
if new_entry is None:
sys.exit (1)
# Determine the format string to used, based on the command.
if config.format_string:
format = config.format_string
elif command == "b":
format = config.balance_format
elif command == "r":
format = config.register_format
elif command == "E":
format = config.equity_format
elif command == "P":
min_val = 0
def vmin(d, val):
global min_val
if not min_val or val < min_val:
min_val = val
return val
return min_val
max_val = 0
def vmax(d, val):
global max_val
if not max_val or val > max_val:
max_val = val
return val
return max_val
format = config.prices_format
elif command == "D":
format = config.pricesdb_format
elif command == "w":
format = config.write_xact_format
else:
format = config.print_format
# Configure the output file
if config.output_file:
out = open (config.output_file, "w")
else:
out = sys.stdout
# Set the final transaction handler: for balances and equity reports,
# it will simply add the value of the transaction to the account's
# xdata, which is used a bit later to report those totals. For all
# other reports, the transaction data is sent to the configured output
# location (default is sys.stdout).
if command == "b" or command == "E":
handler = SetAccountValue ()
elif command == "p" or command == "e":
handler = FormatEntries (out, format)
elif command == "x":
handler = FormatEmacsTransactions (out)
elif command == "X":
handler = FormatXmlEntries (out, config.show_totals)
else:
handler = FormatTransactions (out, format)
if command == "w":
write_textual_journal(journal, args, handler, out);
else:
# Chain transaction filters on top of the base handler. Most of these
# filters customize the output for reporting. None of this is done
# for balance or equity reports, which don't need it.
if not (command == "b" or command == "E"):
if config.head_entries or config.tail_entries:
handler = TruncateEntries (handler, config.head_entries,
config.tail_entries)
if config.display_predicate:
handler = FilterTransactions (handler, config.display_predicate)
handler = CalcTransactions (handler)
#if config.reconcile_balance:
# reconcilable = False
# if config.reconcile_balance == "<all>"
# reconcilable = True
# else
# target_balance = Value (config.reconcile_balance)
#
# cutoff = time.time ()
# # jww (2005-02-15): needs conversion
# #if config.reconcile_date:
# # cutoff = parse_date (config.reconcile_date)
#
# handler = ReconcileTransactions (handler, target_balance,
# cutoff, reconcilable)
if config.sort_string:
handler = SortTransactions (handler, config.sort_string)
if config.show_revalued:
handler = ChangedValueTransactions (handler,
config.show_revalued_only)
if config.show_collapsed:
handler = CollapseTransactions (handler);
if config.show_subtotal and not (command == "b" or command == "E"):
handler = SubtotalTransactions (handler)
if config.days_of_the_week:
handler = DowTransactions (handler)
elif config.by_payee:
handler = ByPayeeTransactions (handler)
if config.report_period:
handler = IntervalTransactions (handler, config.report_period,
config.report_period_sort)
handler = SortTransactions (handler, "d")
if compute_monthly_avg:
handler = ComputeMonthlyAvg (handler)
# The next set of transaction filters are used by all reports.
if config.show_inverted:
handler = InvertTransactions (handler)
if config.show_related:
handler = RelatedTransactions (handler, config.show_all_related)
if config.predicate:
handler = FilterTransactions (handler, config.predicate)
if config.budget_flags:
handler = BudgetTransactions (handler, config.budget_flags)
handler.add_period_entries (journal)
elif config.forecast_limit:
handler = ForecastTransactions (handler, config.forecast_limit)
handler.add_period_entries (journal)
if config.comm_as_payee:
handler = SetCommAsPayee (handler)
# Walk the journal's entries, and pass each entry's transaction to the
# handler chain established above. And although a journal's entries
# can be walked using Python, it is significantly faster to do this
# simple walk in C++, using `walk_entries'.
#
# if command == "e":
# for xact in new_entry:
# handler (xact)
# else:
# for entry in journal:
# for xact in entry:
# handler (xact)
if command == "e":
walk_transactions (new_entry, handler)
elif command == "P" or command == "D":
walk_commodities (handler)
else:
walk_entries (journal, handler)
# Flush the handlers, causing them to output whatever data is still
# pending.
if command != "P" and command != "D":
handler.flush ()
# For the balance and equity reports, the account totals now need to
# be displayed. This is different from outputting transactions, in
# that we are now outputting account totals to display a summary of
# the transactions that were just walked.
if command == "b":
acct_formatter = FormatAccount (out, format, config.display_predicate)
sum_accounts (journal.master)
walk_accounts (journal.master, acct_formatter, config.sort_string)
acct_formatter.final (journal.master)
acct_formatter.flush ()
if account_has_xdata (journal.master):
xdata = account_xdata (journal.master)
if not config.show_collapsed and xdata.total:
out.write("--------------------\n")
xdata.value = xdata.total
# jww (2005-02-15): yet to convert
#acct_formatter.format.format (out, details_t (journal.master))
elif command == "E":
acct_formatter = FormatEquity (out, format, config.display_predicate)
sum_accounts (journal.master)
walk_accounts (journal.master, acct_formatter, config.sort_string)
acct_formatter.flush ()
# If it were important to clean things up, we would have to clear out
# the accumulated xdata at this point:
#clear_all_xdata ()
# If the cache is being used, and is dirty, update it now.
if config.use_cache and config.cache_dirty and config.cache_file:
write_binary_journal (config.cache_file, journal);
# We're done!