ledger/src/value.h
2010-05-08 02:00:35 -04:00

1023 lines
26 KiB
C++

/*
* Copyright (c) 2003-2010, John Wiegley. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of New Artisans LLC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @addtogroup math
*/
/**
* @file value.h
* @author John Wiegley
*
* @ingroup math
*
* @brief Abstract dynamic type representing various numeric types
*
* A value_t object can be one of many types, and changes its type
* dynamically based on how it is used. For example, if you assign
* the number 10 to a value object, it's internal type will be
* INTEGER.
*/
#ifndef _VALUE_H
#define _VALUE_H
#include "balance.h" // includes amount.h
#include "mask.h"
namespace ledger {
DECLARE_EXCEPTION(value_error, std::runtime_error);
class scope_t;
class expr_t;
/**
* @class value_t
*
* @brief Dynamic type representing various numeric types.
*
* The following type is a polymorphous value type used solely for
* performance reasons. The alternative is to compute value
* expressions (valexpr.cc) in terms of the largest data type,
* balance_t. This was found to be prohibitively expensive, especially
* when large logic chains were involved, since many temporary
* allocations would occur for every operator. With value_t, and the
* fact that logic chains only need boolean values to continue, no
* memory allocations need to take place at all.
*/
class value_t
: public ordered_field_operators<value_t,
equality_comparable<value_t, balance_t,
additive<value_t, balance_t,
multiplicative<value_t, balance_t,
ordered_field_operators<value_t, amount_t,
ordered_field_operators<value_t, double,
ordered_field_operators<value_t, unsigned long,
ordered_field_operators<value_t, long> > > > > > > >
{
public:
/**
* The sequence_t member type abstracts the type used to represent a
* resizable "array" of value_t objects.
*/
typedef std::deque<value_t> sequence_t;
typedef sequence_t::iterator iterator;
typedef sequence_t::const_iterator const_iterator;
typedef sequence_t::difference_type difference_type;
/**
* type_t gives the type of the data contained or referenced by a
* value_t object. Use the type() method to get a value of type
* type_t.
*/
enum type_t {
VOID, // a null value (i.e., uninitialized)
BOOLEAN, // a boolean
DATETIME, // a date and time (Boost posix_time)
DATE, // a date (Boost gregorian::date)
INTEGER, // a signed integer value
AMOUNT, // a ledger::amount_t
BALANCE, // a ledger::balance_t
STRING, // a string object
MASK, // a regular expression mask
SEQUENCE, // a vector of value_t objects
SCOPE, // a pointer to a scope
EXPR // a pointer to a value expression
};
private:
class storage_t
{
friend class value_t;
/**
* The `data' member holds the actual bytes relating to whatever
* has been stuffed into this storage object. There is a set of
* asserts in value.cc to guarantee that the sizeof expression
* used here is indeed at least as big as the largest object that
* will ever be copied into `data'.
*
* The `type' member holds the value_t::type_t value representing
* the type of the object stored.
*/
variant<bool, // BOOLEAN
datetime_t, // DATETIME
date_t, // DATE
long, // INTEGER
amount_t, // AMOUNT
balance_t *, // BALANCE
string, // STRING
mask_t, // MASK
sequence_t *, // SEQUENCE
scope_t *, // SCOPE
expr_t * // EXPR
> data;
type_t type;
/**
* `refc' holds the current reference count for each storage_t
* object.
*/
mutable int refc;
/**
* Constructor. Since all storage object are assigned to after
* construction, the only constructors allowed are explicit, and
* copy (see below). The default starting type is VOID, which
* should rarely ever be seen in practice, since the first thing
* that value_t typically does is to assign a valid value.
*/
explicit storage_t() : type(VOID), refc(0) {
TRACE_CTOR(value_t::storage_t, "");
}
public: // so `checked_delete' can access it
/**
* Destructor. Must only be called when the reference count has
* reached zero. The `destroy' method is used to do the actual
* cleanup of the data, since it's quite possible for `destroy' to
* be called while the object is still active -- to clear the
* stored data for subsequent reuse of the storage_t object.
*/
~storage_t() {
TRACE_DTOR(value_t::storage_t);
VERIFY(refc == 0);
destroy();
}
private:
/**
* Assignment and copy operators. These are called when making a
* new copy of a storage object in order to modify the copy.
*/
explicit storage_t(const storage_t& rhs)
: type(rhs.type), refc(0) {
TRACE_CTOR(value_t::storage_t, "copy");
*this = rhs;
}
storage_t& operator=(const storage_t& rhs);
/**
* Reference counting methods. The intrusive_ptr_* methods are
* used by boost::intrusive_ptr to manage the calls to acquire and
* release.
*/
void acquire() const {
DEBUG("value.storage.refcount",
"Acquiring " << this << ", refc now " << refc + 1);
VERIFY(refc >= 0);
refc++;
}
void release() const {
DEBUG("value.storage.refcount",
"Releasing " << this << ", refc now " << refc - 1);
VERIFY(refc > 0);
if (--refc == 0)
checked_delete(this);
}
friend inline void intrusive_ptr_add_ref(value_t::storage_t * storage) {
storage->acquire();
}
friend inline void intrusive_ptr_release(value_t::storage_t * storage) {
storage->release();
}
void destroy() {
DEBUG("value.storage.refcount", "Destroying " << this);
switch (type) {
case VOID:
return;
case BALANCE:
checked_delete(boost::get<balance_t *>(data));
break;
case SEQUENCE:
checked_delete(boost::get<sequence_t *>(data));
break;
default:
break;
}
data = false;
type = VOID;
}
#if defined(HAVE_BOOST_SERIALIZATION)
private:
/** Serialization. */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive& ar, const unsigned int /* version */) {
ar & data;
ar & type;
ar & refc;
}
#endif // HAVE_BOOST_SERIALIZATION
};
/**
* The actual data for each value_t is kept in reference counted storage.
* Data is modified using a copy-on-write policy.
*/
intrusive_ptr<storage_t> storage;
/**
* Make a private copy of the current value (if necessary) so it can
* subsequently be modified.
*/
void _dup() {
VERIFY(storage);
if (storage->refc > 1)
storage = new storage_t(*storage.get());
}
/**
* Because boolean "true" and "false" are so common, a pair of static
* references are kept to prevent the creation of throwaway storage_t
* objects just to represent these two common values.
*/
static intrusive_ptr<storage_t> true_value;
static intrusive_ptr<storage_t> false_value;
public:
static void initialize();
static void shutdown();
public:
/**
* Constructors. value_t objects may be constructed from almost any
* value type that they can contain, including variations on those
* types (such as long, unsigned long, etc). The ordering of the
* methods here reflects the ordering of the constants in type_t
* above.
*
* One constructor of special note is that taking a string or
* character pointer as an argument. Because value_t("$100") is
* interpreted as a commoditized amount, the form value_t("$100",
* true) is required to represent the literal string "$100", and not
* the amount "one hundred dollars".
*/
value_t() {
TRACE_CTOR(value_t, "");
}
value_t(const bool val) {
TRACE_CTOR(value_t, "const bool");
set_boolean(val);
}
value_t(const datetime_t& val) {
TRACE_CTOR(value_t, "const datetime_t&");
set_datetime(val);
}
value_t(const date_t& val) {
TRACE_CTOR(value_t, "const date_t&");
set_date(val);
}
value_t(const long val) {
TRACE_CTOR(value_t, "const long");
set_long(val);
}
value_t(const unsigned long val) {
TRACE_CTOR(value_t, "const unsigned long");
set_amount(val);
}
value_t(const double val) {
TRACE_CTOR(value_t, "const double");
set_amount(val);
}
value_t(const amount_t& val) {
TRACE_CTOR(value_t, "const amount_t&");
set_amount(val);
}
value_t(const balance_t& val) {
TRACE_CTOR(value_t, "const balance_t&");
set_balance(val);
}
value_t(const mask_t& val) {
TRACE_CTOR(value_t, "const mask_t&");
set_mask(val);
}
explicit value_t(const string& val, bool literal = false) {
TRACE_CTOR(value_t, "const string&, bool");
if (literal)
set_string(val);
else
set_amount(amount_t(val));
}
explicit value_t(const char * val, bool literal = false) {
TRACE_CTOR(value_t, "const char *");
if (literal)
set_string(val);
else
set_amount(amount_t(val));
}
value_t(const sequence_t& val) {
TRACE_CTOR(value_t, "const sequence_t&");
set_sequence(val);
}
explicit value_t(scope_t * item) {
TRACE_CTOR(value_t, "scope_t *");
set_scope(item);
}
explicit value_t(const expr_t& item) {
TRACE_CTOR(value_t, "const expr_t&");
set_expr(item);
}
/**
* Destructor. This does not do anything, because the intrusive_ptr
* that refers to our storage object will decrease its reference
* count itself upon destruction.
*/
~value_t() {
TRACE_DTOR(value_t);
}
/**
* Assignment and copy operators. Values are cheaply copied by
* simply creating another reference to the other value's storage
* object. A true copy is only ever made prior to modification.
*/
value_t(const value_t& val) {
TRACE_CTOR(value_t, "copy");
*this = val;
}
value_t& operator=(const value_t& val) {
if (! (this == &val || storage == val.storage))
storage = val.storage;
return *this;
}
/**
* Comparison operators. Values can be compared to other values
*/
bool is_equal_to(const value_t& val) const;
bool is_less_than(const value_t& val) const;
bool is_greater_than(const value_t& val) const;
template <typename T>
bool operator==(const T& amt) const {
return is_equal_to(amt);
}
template <typename T>
bool operator<(const T& amt) const {
return is_less_than(amt);
}
template <typename T>
bool operator>(const T& amt) const {
return is_greater_than(amt);
}
/**
* Binary arithmetic operators.
*
* add(amount_t, optional<amount_t>) allows for the possibility of
* adding both an amount and its cost in a single operation.
* Otherwise, there is no way to separately represent the "cost"
* part of an amount addition statement.
*/
value_t& operator+=(const value_t& val);
value_t& operator-=(const value_t& val);
value_t& operator*=(const value_t& val);
value_t& operator/=(const value_t& val);
/**
* Unary arithmetic operators.
*/
value_t negated() const {
value_t temp = *this;
temp.in_place_negate();
return temp;
}
void in_place_negate(); // exists for efficiency's sake
void in_place_not(); // exists for efficiency's sake
value_t operator-() const {
return negated();
}
value_t abs() const;
value_t rounded() const {
value_t temp(*this);
temp.in_place_round();
return temp;
}
void in_place_round();
value_t truncated() const {
value_t temp(*this);
temp.in_place_truncate();
return temp;
}
void in_place_truncate();
value_t floored() const {
value_t temp(*this);
temp.in_place_floor();
return temp;
}
void in_place_floor();
value_t unrounded() const {
value_t temp(*this);
temp.in_place_unround();
return temp;
}
void in_place_unround();
value_t reduced() const {
value_t temp(*this);
temp.in_place_reduce();
return temp;
}
void in_place_reduce(); // exists for efficiency's sake
value_t unreduced() const {
value_t temp(*this);
temp.in_place_unreduce();
return temp;
}
void in_place_unreduce(); // exists for efficiency's sake
// Return the "market value" of a given value at a specific time.
value_t value(const bool primary_only = false,
const optional<datetime_t>& moment = none,
const optional<commodity_t&>& in_terms_of = none) const;
value_t price() const;
value_t exchange_commodities(const std::string& commodities,
const bool add_prices = false,
const optional<datetime_t>& moment = none);
/**
* Truth tests.
*/
operator bool() const;
bool is_nonzero() const {
return ! is_zero();
}
bool is_realzero() const;
bool is_zero() const;
bool is_null() const {
if (! storage) {
VERIFY(is_type(VOID));
return true;
} else {
VERIFY(! is_type(VOID));
return false;
}
}
type_t type() const {
return storage ? storage->type : VOID;
}
bool is_type(type_t _type) const {
return type() == _type;
}
private:
void set_type(type_t new_type);
public:
/**
* Data manipulation methods. A value object may be truth tested for the
* existence of every type it can contain:
*
* is_boolean()
* is_long()
* is_datetime()
* is_date()
* is_amount()
* is_balance()
* is_string()
* is_mask()
* is_sequence()
* is_pointer()
*
* There are corresponding as_*() methods that represent a value as a
* reference to its underlying type. For example, as_long() returns a
* reference to a "const long".
*
* There are also as_*_lval() methods, which represent the underlying data
* as a reference to a non-const type. The difference here is that an
* _lval() call causes the underlying data to be fully copied before the
* resulting reference is returned.
*
* Lastly, there are corresponding set_*(data) methods for directly
* assigning data of a particular type, rather than using the regular
* assignment operator (whose implementation simply calls the various set_
* methods).
*/
bool is_boolean() const {
return is_type(BOOLEAN);
}
bool& as_boolean_lval() {
VERIFY(is_boolean());
_dup();
return boost::get<bool>(storage->data);
}
const bool& as_boolean() const {
VERIFY(is_boolean());
return boost::get<bool>(storage->data);
}
void set_boolean(const bool val) {
set_type(BOOLEAN);
storage = val ? true_value : false_value;
}
bool is_datetime() const {
return is_type(DATETIME);
}
datetime_t& as_datetime_lval() {
VERIFY(is_datetime());
_dup();
return boost::get<datetime_t>(storage->data);
}
const datetime_t& as_datetime() const {
VERIFY(is_datetime());
return boost::get<datetime_t>(storage->data);
}
void set_datetime(const datetime_t& val) {
set_type(DATETIME);
storage->data = val;
}
bool is_date() const {
return is_type(DATE);
}
date_t& as_date_lval() {
VERIFY(is_date());
_dup();
return boost::get<date_t>(storage->data);
}
const date_t& as_date() const {
VERIFY(is_date());
return boost::get<date_t>(storage->data);
}
void set_date(const date_t& val) {
set_type(DATE);
storage->data = val;
}
bool is_long() const {
return is_type(INTEGER);
}
long& as_long_lval() {
VERIFY(is_long());
_dup();
return boost::get<long>(storage->data);
}
const long& as_long() const {
VERIFY(is_long());
return boost::get<long>(storage->data);
}
void set_long(const long val) {
set_type(INTEGER);
storage->data = val;
}
bool is_amount() const {
return is_type(AMOUNT);
}
amount_t& as_amount_lval() {
VERIFY(is_amount());
_dup();
return boost::get<amount_t>(storage->data);
}
const amount_t& as_amount() const {
VERIFY(is_amount());
return boost::get<amount_t>(storage->data);
}
void set_amount(const amount_t& val) {
VERIFY(val.valid());
set_type(AMOUNT);
storage->data = val;
}
bool is_balance() const {
return is_type(BALANCE);
}
balance_t& as_balance_lval() {
VERIFY(is_balance());
_dup();
return *boost::get<balance_t *>(storage->data);
}
const balance_t& as_balance() const {
VERIFY(is_balance());
return *boost::get<balance_t *>(storage->data);
}
void set_balance(const balance_t& val) {
VERIFY(val.valid());
set_type(BALANCE);
storage->data = new balance_t(val);
}
bool is_string() const {
return is_type(STRING);
}
string& as_string_lval() {
VERIFY(is_string());
_dup();
return boost::get<string>(storage->data);
}
const string& as_string() const {
VERIFY(is_string());
return boost::get<string>(storage->data);
}
void set_string(const string& val = "") {
set_type(STRING);
storage->data = val;
VERIFY(boost::get<string>(storage->data) == val);
}
void set_string(const char * val = "") {
set_type(STRING);
storage->data = string(val);
VERIFY(boost::get<string>(storage->data) == val);
}
bool is_mask() const {
return is_type(MASK);
}
mask_t& as_mask_lval() {
VERIFY(is_mask());
_dup();
VERIFY(boost::get<mask_t>(storage->data).valid());
return boost::get<mask_t>(storage->data);
}
const mask_t& as_mask() const {
VERIFY(is_mask());
VERIFY(boost::get<mask_t>(storage->data).valid());
return boost::get<mask_t>(storage->data);
}
void set_mask(const string& val) {
set_type(MASK);
storage->data = mask_t(val);
}
void set_mask(const mask_t& val) {
set_type(MASK);
storage->data = val;
}
bool is_sequence() const {
return is_type(SEQUENCE);
}
sequence_t& as_sequence_lval() {
VERIFY(is_sequence());
_dup();
return *boost::get<sequence_t *>(storage->data);
}
const sequence_t& as_sequence() const {
VERIFY(is_sequence());
return *boost::get<sequence_t *>(storage->data);
}
void set_sequence(const sequence_t& val) {
set_type(SEQUENCE);
storage->data = new sequence_t(val);
}
/**
* Dealing with scope pointers.
*/
bool is_scope() const {
return is_type(SCOPE);
}
scope_t * as_scope() const {
VERIFY(is_scope());
return boost::get<scope_t *>(storage->data);
}
void set_scope(scope_t * val) {
set_type(SCOPE);
storage->data = val;
}
/**
* Dealing with expr pointers.
*/
bool is_expr() const {
return is_type(EXPR);
}
expr_t& as_expr_lval() const {
VERIFY(is_expr());
return *boost::get<expr_t *>(storage->data);
}
const expr_t& as_expr() const {
VERIFY(is_expr());
return *boost::get<expr_t *>(storage->data);
}
void set_expr(const expr_t& val);
/**
* Data conversion methods. These methods convert a value object to
* its underlying type, where possible. If not possible, an
* exception is thrown.
*/
bool to_boolean() const;
int to_int() const;
long to_long() const;
datetime_t to_datetime() const;
date_t to_date() const;
amount_t to_amount() const;
balance_t to_balance() const;
string to_string() const;
mask_t to_mask() const;
sequence_t to_sequence() const;
/**
* Dynamic typing conversion methods.
*
* `cast(type_t)' returns a new value whose type has been cast to
* the given type, but whose value is based on the original value.
* For example, the uncommoditized AMOUNT "100.00" could be cast to
* an INTEGER value. If a cast would lose information or is not
* meaningful, an exception is thrown.
*
* `simplify()' is an automatic cast to the simplest type that can
* still represent the original value.
*
* There are also "in-place" versions of these two methods:
* in_place_cast
* in_place_simplify
*/
value_t casted(type_t cast_type) const {
value_t temp(*this);
temp.in_place_cast(cast_type);
return temp;
}
void in_place_cast(type_t cast_type);
value_t simplified() const {
value_t temp = *this;
temp.in_place_simplify();
return temp;
}
void in_place_simplify();
value_t number() const;
/**
* Annotated commodity methods.
*/
void annotate(const annotation_t& details);
bool has_annotation() const;
annotation_t& annotation();
const annotation_t& annotation() const {
return const_cast<value_t&>(*this).annotation();
}
value_t strip_annotations(const keep_details_t& what_to_keep) const;
/**
* Collection-style access methods for SEQUENCE values.
*/
value_t& operator[](const std::size_t index) {
VERIFY(! is_null());
if (is_sequence())
return as_sequence_lval()[index];
else if (index == 0)
return *this;
assert(false);
static value_t null;
return null;
}
const value_t& operator[](const std::size_t index) const {
VERIFY(! is_null());
if (is_sequence())
return as_sequence()[index];
else if (index == 0)
return *this;
assert(false);
static value_t null;
return null;
}
void push_front(const value_t& val) {
if (is_null())
*this = sequence_t();
if (! is_sequence())
in_place_cast(SEQUENCE);
as_sequence_lval().push_front(val);
}
void push_back(const value_t& val) {
if (is_null())
*this = sequence_t();
if (! is_sequence())
in_place_cast(SEQUENCE);
as_sequence_lval().push_back(val);
}
void pop_back() {
VERIFY(! is_null());
if (! is_sequence()) {
#if BOOST_VERSION >= 103700
storage.reset();
#else
storage = intrusive_ptr<storage_t>();
#endif
} else {
as_sequence_lval().pop_back();
const sequence_t& seq(as_sequence());
std::size_t new_size = seq.size();
if (new_size == 0) {
#if BOOST_VERSION >= 103700
storage.reset();
#else
storage = intrusive_ptr<storage_t>();
#endif
}
else if (new_size == 1) {
*this = seq.front();
}
}
}
sequence_t::iterator begin() {
return as_sequence_lval().begin();
}
sequence_t::iterator end() {
return as_sequence_lval().end();
}
sequence_t::const_iterator begin() const {
return as_sequence().begin();
}
sequence_t::const_iterator end() const {
return as_sequence().end();
}
std::size_t size() const {
if (is_null())
return 0;
else if (is_sequence())
return as_sequence().size();
else
return 1;
}
bool empty() const {
return size() == 0;
}
/**
* Informational methods.
*/
string label(optional<type_t> the_type = none) const {
switch (the_type ? *the_type : type()) {
case VOID:
return _("an uninitialized value");
case BOOLEAN:
return _("a boolean");
case DATETIME:
return _("a date/time");
case DATE:
return _("a date");
case INTEGER:
return _("an integer");
case AMOUNT:
return _("an amount");
case BALANCE:
return _("a balance");
case STRING:
return _("a string");
case MASK:
return _("a regexp");
case SEQUENCE:
return _("a sequence");
case SCOPE:
return _("a scope");
case EXPR:
return _("a expr");
default:
assert(false);
break;
}
assert(false);
return _("<invalid>");
}
/**
* Printing methods.
*/
void print(std::ostream& out,
const int first_width = -1,
const int latter_width = -1,
const bool right_justify = false,
const bool colorize = false) const;
void dump(std::ostream& out, const bool relaxed = true) const;
/**
* Debugging methods.
*/
bool valid() const;
#if defined(HAVE_BOOST_SERIALIZATION)
private:
/** Serialization. */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive& ar, const unsigned int /* version */) {
ar & true_value;
ar & false_value;
ar & storage;
}
#endif // HAVE_BOOST_SERIALIZATION
};
#define NULL_VALUE (value_t())
inline value_t string_value(const string& str = "") {
return value_t(str, true);
}
#define VALUE_OR_ZERO(val) ((val).is_null() ? value_t(0L) : (val))
#define SIMPLIFIED_VALUE_OR_ZERO(val) \
((val).is_null() ? value_t(0L) : (val).simplified())
inline value_t mask_value(const string& str) {
return value_t(mask_t(str));
}
inline std::ostream& operator<<(std::ostream& out, const value_t& val) {
val.print(out);
return out;
}
inline string value_context(const value_t& val) {
std::ostringstream buf;
val.print(buf, 20, 20, true);
return buf.str();
}
template <typename T>
inline value_t& add_or_set_value(value_t& lhs, const T& rhs) {
if (lhs.is_null())
lhs = rhs;
else
lhs += rhs;
return lhs;
}
struct sort_value_t
{
bool inverted;
value_t value;
sort_value_t() : inverted(false) {}
};
bool sort_value_is_less_than(const std::list<sort_value_t>& left_values,
const std::list<sort_value_t>& right_values);
void to_xml(std::ostream& out, const value_t& value);
} // namespace ledger
#endif // _VALUE_H