ledger/valexpr.cc
John Wiegley f691735c6c Restructed the code that it can build and be used as a shared library.
The command-line version is still statically bound in the build
process by default (for the sake of speed).
2008-04-13 02:41:21 -04:00

1122 lines
27 KiB
C++

#include "valexpr.h"
#include "walk.h"
#include "error.h"
#include "datetime.h"
#include "debug.h"
#include "util.h"
#ifdef USE_BOOST_PYTHON
#include "py_eval.h"
#endif
namespace ledger {
std::auto_ptr<value_expr_t> amount_expr;
std::auto_ptr<value_expr_t> total_expr;
std::time_t terminus = now;
details_t::details_t(const transaction_t& _xact)
: entry(_xact.entry), xact(&_xact), account(xact_account(_xact))
{
DEBUG_PRINT("ledger.memory.ctors", "ctor details_t");
}
void value_expr_t::compute(value_t& result, const details_t& details) const
{
switch (kind) {
case CONSTANT_I:
result = constant_i;
break;
case CONSTANT_T:
result = long(constant_t);
break;
case CONSTANT_A:
result = constant_a;
break;
case AMOUNT:
if (details.xact) {
if (transaction_has_xdata(*details.xact) &&
transaction_xdata_(*details.xact).dflags & TRANSACTION_COMPOSITE)
result = transaction_xdata_(*details.xact).composite_amount;
else
result = details.xact->amount;
}
else if (details.account && account_has_xdata(*details.account)) {
result = account_xdata(*details.account).value;
}
else {
result = 0L;
}
break;
case COST:
if (details.xact) {
bool set = false;
if (transaction_has_xdata(*details.xact)) {
transaction_xdata_t& xdata(transaction_xdata_(*details.xact));
if (xdata.dflags & TRANSACTION_COMPOSITE) {
if (xdata.composite_amount.type == value_t::BALANCE_PAIR &&
((balance_pair_t *) xdata.composite_amount.data)->cost)
result = *((balance_pair_t *) xdata.composite_amount.data)->cost;
else
result = xdata.composite_amount;
set = true;
}
}
if (! set) {
if (details.xact->cost)
result = *details.xact->cost;
else
result = details.xact->amount;
}
}
else if (details.account && account_has_xdata(*details.account)) {
result = account_xdata(*details.account).value.cost();
}
else {
result = 0L;
}
break;
case TOTAL:
if (details.xact && transaction_has_xdata(*details.xact))
result = transaction_xdata_(*details.xact).total;
else if (details.account && account_has_xdata(*details.account))
result = account_xdata(*details.account).total;
else
result = 0L;
break;
case COST_TOTAL:
if (details.xact && transaction_has_xdata(*details.xact))
result = transaction_xdata_(*details.xact).total.cost();
else if (details.account && account_has_xdata(*details.account))
result = account_xdata(*details.account).total.cost();
else
result = 0L;
break;
case VALUE_EXPR:
if (amount_expr.get())
amount_expr->compute(result, details);
else
result = 0L;
break;
case TOTAL_EXPR:
if (total_expr.get())
total_expr->compute(result, details);
else
result = 0L;
break;
case DATE:
if (details.xact && transaction_has_xdata(*details.xact) &&
transaction_xdata_(*details.xact).date)
result = long(transaction_xdata_(*details.xact).date);
else if (details.xact)
result = long(details.xact->date());
else if (details.entry)
result = long(details.entry->date());
else
result = long(terminus);
break;
case CLEARED:
if (details.xact)
result = details.xact->state == transaction_t::CLEARED;
else
result = false;
break;
case PENDING:
if (details.xact)
result = details.xact->state == transaction_t::PENDING;
else
result = false;
break;
case REAL:
if (details.xact)
result = ! (details.xact->flags & TRANSACTION_VIRTUAL);
else
result = true;
break;
case ACTUAL:
if (details.xact)
result = ! (details.xact->flags & TRANSACTION_AUTO);
else
result = true;
break;
case INDEX:
if (details.xact && transaction_has_xdata(*details.xact))
result = long(transaction_xdata_(*details.xact).index + 1);
else if (details.account && account_has_xdata(*details.account))
result = long(account_xdata(*details.account).count);
else
result = 0L;
break;
case COUNT:
if (details.xact && transaction_has_xdata(*details.xact))
result = long(transaction_xdata_(*details.xact).index + 1);
else if (details.account && account_has_xdata(*details.account))
result = long(account_xdata(*details.account).total_count);
else
result = 0L;
break;
case DEPTH:
if (details.account)
result = long(details.account->depth);
else
result = 0L;
break;
case F_ARITH_MEAN:
if (details.xact && transaction_has_xdata(*details.xact)) {
assert(left);
left->compute(result, details);
result /= amount_t(long(transaction_xdata_(*details.xact).index + 1));
}
else if (details.account && account_has_xdata(*details.account) &&
account_xdata(*details.account).total_count) {
assert(left);
left->compute(result, details);
result /= amount_t(long(account_xdata(*details.account).total_count));
}
else {
result = 0L;
}
break;
case F_PARENT:
if (details.account && details.account->parent)
left->compute(result, details_t(*details.account->parent));
break;
case F_NEG:
assert(left);
left->compute(result, details);
result.negate();
break;
case F_ABS:
assert(left);
left->compute(result, details);
result.abs();
break;
case F_STRIP: {
assert(left);
left->compute(result, details);
balance_t * bal = NULL;
switch (result.type) {
case value_t::BALANCE_PAIR:
bal = &((balance_pair_t *) result.data)->quantity;
// fall through...
case value_t::BALANCE:
if (! bal)
bal = (balance_t *) result.data;
if (bal->amounts.size() < 2) {
result.cast(value_t::AMOUNT);
} else {
value_t temp;
for (amounts_map::const_iterator i = bal->amounts.begin();
i != bal->amounts.end();
i++) {
amount_t x = (*i).second;
x.clear_commodity();
temp += x;
}
result = temp;
assert(temp.type == value_t::AMOUNT);
}
// fall through...
case value_t::AMOUNT:
((amount_t *) result.data)->clear_commodity();
break;
default:
break;
}
break;
}
case F_CODE_MASK:
assert(mask);
if (details.entry)
result = mask->match(details.entry->code);
else
result = false;
break;
case F_PAYEE_MASK:
assert(mask);
if (details.entry)
result = mask->match(details.entry->payee);
else
result = false;
break;
case F_NOTE_MASK:
assert(mask);
if (details.xact)
result = mask->match(details.xact->note);
else
result = false;
break;
case F_ACCOUNT_MASK:
assert(mask);
if (details.account)
result = mask->match(details.account->fullname());
else
result = false;
break;
case F_SHORT_ACCOUNT_MASK:
assert(mask);
if (details.account)
result = mask->match(details.account->name);
else
result = false;
break;
case F_COMMODITY_MASK:
assert(mask);
if (details.xact)
result = mask->match(details.xact->amount.commodity().symbol);
else
result = false;
break;
case F_VALUE: {
assert(left);
left->compute(result, details);
std::time_t moment = terminus;
if (right) {
switch (right->kind) {
case DATE:
if (details.xact && transaction_has_xdata(*details.xact) &&
transaction_xdata_(*details.xact).date)
moment = transaction_xdata_(*details.xact).date;
else if (details.xact)
moment = details.xact->date();
else if (details.entry)
moment = details.entry->date();
break;
case CONSTANT_T:
moment = right->constant_t;
break;
default:
throw compute_error("Invalid date passed to P(value,date)");
}
}
result = result.value(moment);
break;
}
case F_INTERP_FUNC: {
#ifdef USE_BOOST_PYTHON
if (! python_call(constant_s, right, details, result))
result = 0L;
#else
result = 0L;
#endif
break;
}
case O_NOT:
left->compute(result, details);
result.negate();
break;
case O_QUES: {
assert(left);
assert(right);
assert(right->kind == O_COL);
left->compute(result, details);
if (result)
right->left->compute(result, details);
else
right->right->compute(result, details);
break;
}
case O_AND:
assert(left);
assert(right);
left->compute(result, details);
if (result)
right->compute(result, details);
break;
case O_OR:
assert(left);
assert(right);
left->compute(result, details);
if (! result)
right->compute(result, details);
break;
case O_EQ:
case O_LT:
case O_LTE:
case O_GT:
case O_GTE: {
assert(left);
assert(right);
value_t temp;
left->compute(temp, details);
right->compute(result, details);
switch (kind) {
case O_EQ: result = temp == result; break;
case O_LT: result = temp < result; break;
case O_LTE: result = temp <= result; break;
case O_GT: result = temp > result; break;
case O_GTE: result = temp >= result; break;
default: assert(0); break;
}
break;
}
case O_ADD:
case O_SUB:
case O_MUL:
case O_DIV: {
assert(left);
assert(right);
value_t temp;
right->compute(temp, details);
left->compute(result, details);
switch (kind) {
case O_ADD: result += temp; break;
case O_SUB: result -= temp; break;
case O_MUL: result *= temp; break;
case O_DIV: result /= temp; break;
default: assert(0); break;
}
break;
}
case LAST:
default:
assert(0);
break;
}
}
static inline void unexpected(char c, char wanted = '\0') {
if ((unsigned char) c == 0xff) {
if (wanted)
throw value_expr_error(std::string("Missing '") + wanted + "'");
else
throw value_expr_error("Unexpected end");
} else {
if (wanted)
throw value_expr_error(std::string("Invalid char '") + c +
"' (wanted '" + wanted + "')");
else
throw value_expr_error(std::string("Invalid char '") + c + "'");
}
}
value_expr_t * parse_value_term(std::istream& in);
inline value_expr_t * parse_value_term(const char * p) {
std::istringstream stream(p);
return parse_value_term(stream);
}
value_expr_t * parse_value_term(std::istream& in)
{
std::auto_ptr<value_expr_t> node;
char buf[256];
char c = peek_next_nonws(in);
if (std::isdigit(c)) {
READ_INTO(in, buf, 255, c, std::isdigit(c));
node.reset(new value_expr_t(value_expr_t::CONSTANT_I));
node->constant_i = std::atol(buf);
return node.release();
}
else if (c == '{') {
in.get(c);
READ_INTO(in, buf, 255, c, c != '}');
if (c == '}')
in.get(c);
else
unexpected(c, '}');
node.reset(new value_expr_t(value_expr_t::CONSTANT_A));
node->constant_a.parse(buf);
return node.release();
}
in.get(c);
switch (c) {
// Basic terms
case 'm':
node.reset(new value_expr_t(value_expr_t::CONSTANT_T));
node->constant_t = terminus;
break;
case 'a': node.reset(new value_expr_t(value_expr_t::AMOUNT)); break;
case 'b': node.reset(new value_expr_t(value_expr_t::COST)); break;
case 'd': node.reset(new value_expr_t(value_expr_t::DATE)); break;
case 'X': node.reset(new value_expr_t(value_expr_t::CLEARED)); break;
case 'Y': node.reset(new value_expr_t(value_expr_t::PENDING)); break;
case 'R': node.reset(new value_expr_t(value_expr_t::REAL)); break;
case 'L': node.reset(new value_expr_t(value_expr_t::ACTUAL)); break;
case 'n': node.reset(new value_expr_t(value_expr_t::INDEX)); break;
case 'N': node.reset(new value_expr_t(value_expr_t::COUNT)); break;
case 'l': node.reset(new value_expr_t(value_expr_t::DEPTH)); break;
case 'O': node.reset(new value_expr_t(value_expr_t::TOTAL)); break;
case 'B': node.reset(new value_expr_t(value_expr_t::COST_TOTAL)); break;
// Relating to format_t
case 't': node.reset(new value_expr_t(value_expr_t::VALUE_EXPR)); break;
case 'T': node.reset(new value_expr_t(value_expr_t::TOTAL_EXPR)); break;
// Compound terms
case 'v': node.reset(parse_value_expr("P(a,d)")); break;
case 'V': node.reset(parse_value_term("P(O,d)")); break;
case 'g': node.reset(parse_value_expr("v-b")); break;
case 'G': node.reset(parse_value_expr("V-B")); break;
// Functions
case '^':
node.reset(new value_expr_t(value_expr_t::F_PARENT));
node->left = parse_value_term(in);
break;
case '-':
node.reset(new value_expr_t(value_expr_t::F_NEG));
node->left = parse_value_term(in);
break;
case 'U':
node.reset(new value_expr_t(value_expr_t::F_ABS));
node->left = parse_value_term(in);
break;
case 'S':
node.reset(new value_expr_t(value_expr_t::F_STRIP));
node->left = parse_value_term(in);
break;
case 'A':
node.reset(new value_expr_t(value_expr_t::F_ARITH_MEAN));
node->left = parse_value_term(in);
break;
case 'P':
node.reset(new value_expr_t(value_expr_t::F_VALUE));
if (peek_next_nonws(in) == '(') {
in.get(c);
node->left = parse_value_expr(in, true);
if (peek_next_nonws(in) == ',') {
in.get(c);
node->right = parse_value_expr(in, true);
}
in.get(c);
if (c != ')')
unexpected(c, ')');
} else {
node->left = parse_value_term(in);
}
break;
// Other
case 'c':
case 'C':
case 'p':
case 'w':
case 'W':
case 'e':
case '/': {
bool code_mask = c == 'c';
bool commodity_mask = c == 'C';
bool payee_mask = c == 'p';
bool note_mask = c == 'e';
bool short_account_mask = c == 'w';
if (c == '/') {
c = peek_next_nonws(in);
if (c == '/') {
in.get(c);
c = in.peek();
if (c == '/') {
in.get(c);
c = in.peek();
short_account_mask = true;
} else {
payee_mask = true;
}
}
} else {
in.get(c);
}
// Read in the regexp
READ_INTO(in, buf, 255, c, c != '/');
if (c != '/')
unexpected(c, '/');
value_expr_t::kind_t kind;
if (short_account_mask)
kind = value_expr_t::F_SHORT_ACCOUNT_MASK;
else if (code_mask)
kind = value_expr_t::F_CODE_MASK;
else if (commodity_mask)
kind = value_expr_t::F_COMMODITY_MASK;
else if (payee_mask)
kind = value_expr_t::F_PAYEE_MASK;
else if (note_mask)
kind = value_expr_t::F_NOTE_MASK;
else
kind = value_expr_t::F_ACCOUNT_MASK;
in.get(c);
node.reset(new value_expr_t(kind));
node->mask = new mask_t(buf);
break;
}
case '@': {
READ_INTO(in, buf, 255, c, c != '(');
if (c != '(')
unexpected(c, '(');
node.reset(new value_expr_t(value_expr_t::F_INTERP_FUNC));
node->constant_s = buf;
in.get(c);
if (peek_next_nonws(in) == ')') {
in.get(c);
} else {
node->right = new value_expr_t(value_expr_t::O_ARG);
value_expr_t * cur = node->right;
cur->left = parse_value_expr(in, true);
in.get(c);
while (! in.eof() && c == ',') {
cur->right = new value_expr_t(value_expr_t::O_ARG);
cur = cur->right;
cur->left = parse_value_expr(in, true);
in.get(c);
}
if (c != ')')
unexpected(c, ')');
}
break;
}
case '(':
node.reset(parse_value_expr(in, true));
in.get(c);
if (c != ')')
unexpected(c, ')');
break;
case '[': {
READ_INTO(in, buf, 255, c, c != ']');
if (c != ']')
unexpected(c, ']');
in.get(c);
node.reset(new value_expr_t(value_expr_t::CONSTANT_T));
interval_t timespan(buf);
node->constant_t = timespan.first();
break;
}
default:
in.unget();
break;
}
return node.release();
}
value_expr_t * parse_mul_expr(std::istream& in)
{
std::auto_ptr<value_expr_t> node(parse_value_term(in));
if (node.get() && ! in.eof()) {
char c = peek_next_nonws(in);
while (c == '*' || c == '/') {
in.get(c);
switch (c) {
case '*': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_MUL));
node->left = prev.release();
node->right = parse_value_term(in);
break;
}
case '/': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_DIV));
node->left = prev.release();
node->right = parse_value_term(in);
break;
}
}
c = peek_next_nonws(in);
}
}
return node.release();
}
value_expr_t * parse_add_expr(std::istream& in)
{
std::auto_ptr<value_expr_t> node(parse_mul_expr(in));
if (node.get() && ! in.eof()) {
char c = peek_next_nonws(in);
while (c == '+' || c == '-') {
in.get(c);
switch (c) {
case '+': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_ADD));
node->left = prev.release();
node->right = parse_mul_expr(in);
break;
}
case '-': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_SUB));
node->left = prev.release();
node->right = parse_mul_expr(in);
break;
}
}
c = peek_next_nonws(in);
}
}
return node.release();
}
value_expr_t * parse_logic_expr(std::istream& in)
{
std::auto_ptr<value_expr_t> node;
if (peek_next_nonws(in) == '!') {
char c;
in.get(c);
node.reset(new value_expr_t(value_expr_t::O_NOT));
node->left = parse_logic_expr(in);
return node.release();
}
node.reset(parse_add_expr(in));
if (node.get() && ! in.eof()) {
char c = peek_next_nonws(in);
if (c == '=' || c == '<' || c == '>') {
in.get(c);
switch (c) {
case '=': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_EQ));
node->left = prev.release();
node->right = parse_add_expr(in);
break;
}
case '<': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_LT));
if (peek_next_nonws(in) == '=') {
in.get(c);
node->kind = value_expr_t::O_LTE;
}
node->left = prev.release();
node->right = parse_add_expr(in);
break;
}
case '>': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_GT));
if (peek_next_nonws(in) == '=') {
in.get(c);
node->kind = value_expr_t::O_GTE;
}
node->left = prev.release();
node->right = parse_add_expr(in);
break;
}
default:
if (! in.eof())
unexpected(c);
break;
}
}
}
return node.release();
}
value_expr_t * parse_value_expr(std::istream& in, const bool partial)
{
std::auto_ptr<value_expr_t> node(parse_logic_expr(in));
if (node.get() && ! in.eof()) {
char c = peek_next_nonws(in);
while (c == '&' || c == '|' || c == '?') {
in.get(c);
switch (c) {
case '&': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_AND));
node->left = prev.release();
node->right = parse_logic_expr(in);
break;
}
case '|': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_OR));
node->left = prev.release();
node->right = parse_logic_expr(in);
break;
}
case '?': {
std::auto_ptr<value_expr_t> prev(node.release());
node.reset(new value_expr_t(value_expr_t::O_QUES));
node->left = prev.release();
value_expr_t * choices;
node->right = choices = new value_expr_t(value_expr_t::O_COL);
choices->left = parse_logic_expr(in);
c = peek_next_nonws(in);
if (c != ':')
unexpected(c, ':');
in.get(c);
choices->right = parse_logic_expr(in);
break;
}
default:
if (! in.eof())
unexpected(c);
break;
}
c = peek_next_nonws(in);
}
}
char c;
if (! node.get()) {
in.get(c);
if (in.eof())
throw value_expr_error(std::string("Failed to parse value expression"));
else
unexpected(c);
} else if (! partial) {
in.get(c);
if (! in.eof())
unexpected(c);
else
in.unget();
}
return node.release();
}
#ifdef DEBUG_ENABLED
void dump_value_expr(std::ostream& out, const value_expr_t * node)
{
switch (node->kind) {
case value_expr_t::CONSTANT_I:
out << "UINT[" << node->constant_i << ']';
break;
case value_expr_t::CONSTANT_T:
out << "DATE/TIME[" << node->constant_t << ']';
break;
case value_expr_t::CONSTANT_A:
out << "CONST[" << node->constant_a << ']';
break;
case value_expr_t::AMOUNT: out << "AMOUNT"; break;
case value_expr_t::COST: out << "COST"; break;
case value_expr_t::DATE: out << "DATE"; break;
case value_expr_t::CLEARED: out << "CLEARED"; break;
case value_expr_t::PENDING: out << "PENDING"; break;
case value_expr_t::REAL: out << "REAL"; break;
case value_expr_t::ACTUAL: out << "ACTUAL"; break;
case value_expr_t::INDEX: out << "INDEX"; break;
case value_expr_t::COUNT: out << "COUNT"; break;
case value_expr_t::DEPTH: out << "DEPTH"; break;
case value_expr_t::TOTAL: out << "TOTAL"; break;
case value_expr_t::COST_TOTAL: out << "COST_TOTAL"; break;
case value_expr_t::F_ARITH_MEAN:
out << "MEAN(";
dump_value_expr(out, node->left);
out << ')';
break;
case value_expr_t::F_NEG:
out << "ABS(";
dump_value_expr(out, node->left);
out << ')';
break;
case value_expr_t::F_ABS:
out << "ABS(";
dump_value_expr(out, node->left);
out << ')';
break;
case value_expr_t::F_STRIP:
out << "STRIP(";
dump_value_expr(out, node->left);
out << ')';
break;
case value_expr_t::F_CODE_MASK:
assert(node->mask);
out << "M_CODE(" << node->mask->pattern << ')';
break;
case value_expr_t::F_PAYEE_MASK:
assert(node->mask);
out << "M_PAYEE(" << node->mask->pattern << ')';
break;
case value_expr_t::F_NOTE_MASK:
assert(node->mask);
out << "M_NOTE(" << node->mask->pattern << ')';
break;
case value_expr_t::F_ACCOUNT_MASK:
assert(node->mask);
out << "M_ACCT(" << node->mask->pattern << ')';
break;
case value_expr_t::F_SHORT_ACCOUNT_MASK:
assert(node->mask);
out << "M_SACCT(" << node->mask->pattern << ')';
break;
case value_expr_t::F_COMMODITY_MASK:
assert(node->mask);
out << "M_COMM(" << node->mask->pattern << ')';
break;
case value_expr_t::F_VALUE:
out << "VALUE(";
dump_value_expr(out, node->left);
if (node->right) {
out << ", ";
dump_value_expr(out, node->right);
}
out << ')';
break;
case value_expr_t::F_INTERP_FUNC:
out << "F_INTERP[" << node->constant_s << "](";
dump_value_expr(out, node->right);
out << ')';
break;
case value_expr_t::O_NOT:
out << '!';
dump_value_expr(out, node->left);
break;
case value_expr_t::O_ARG:
dump_value_expr(out, node->left);
if (node->right) {
out << ',';
dump_value_expr(out, node->right);
}
break;
case value_expr_t::O_QUES:
dump_value_expr(out, node->left);
out << '?';
dump_value_expr(out, node->right->left);
out << ':';
dump_value_expr(out, node->right->right);
break;
case value_expr_t::O_AND:
case value_expr_t::O_OR:
out << '(';
dump_value_expr(out, node->left);
switch (node->kind) {
case value_expr_t::O_AND: out << " & "; break;
case value_expr_t::O_OR: out << " | "; break;
default: assert(0); break;
}
dump_value_expr(out, node->right);
out << ')';
break;
case value_expr_t::O_EQ:
case value_expr_t::O_LT:
case value_expr_t::O_LTE:
case value_expr_t::O_GT:
case value_expr_t::O_GTE:
out << '(';
dump_value_expr(out, node->left);
switch (node->kind) {
case value_expr_t::O_EQ: out << '='; break;
case value_expr_t::O_LT: out << '<'; break;
case value_expr_t::O_LTE: out << "<="; break;
case value_expr_t::O_GT: out << '>'; break;
case value_expr_t::O_GTE: out << ">="; break;
default: assert(0); break;
}
dump_value_expr(out, node->right);
out << ')';
break;
case value_expr_t::O_ADD:
case value_expr_t::O_SUB:
case value_expr_t::O_MUL:
case value_expr_t::O_DIV:
out << '(';
dump_value_expr(out, node->left);
switch (node->kind) {
case value_expr_t::O_ADD: out << '+'; break;
case value_expr_t::O_SUB: out << '-'; break;
case value_expr_t::O_MUL: out << '*'; break;
case value_expr_t::O_DIV: out << '/'; break;
default: assert(0); break;
}
dump_value_expr(out, node->right);
out << ')';
break;
case value_expr_t::LAST:
default:
assert(0);
break;
}
}
#endif // DEBUG_ENABLED
} // namespace ledger
#ifdef USE_BOOST_PYTHON
#include <boost/python.hpp>
using namespace boost::python;
using namespace ledger;
value_t py_compute_1(value_expr_t& value_expr, const details_t& item)
{
value_t result;
value_expr.compute(result, item);
return result;
}
template <typename T>
value_t py_compute(value_expr_t& value_expr, const T& item)
{
value_t result;
value_expr.compute(result, details_t(item));
return result;
}
value_expr_t * py_parse_value_expr_1(const std::string& str)
{
return parse_value_expr(str);
}
value_expr_t * py_parse_value_expr_2(const std::string& str, const bool partial)
{
return parse_value_expr(str, partial);
}
#define EXC_TRANSLATOR(type) \
void exc_translate_ ## type(const type& err) { \
PyErr_SetString(PyExc_RuntimeError, err.what()); \
}
EXC_TRANSLATOR(value_expr_error)
EXC_TRANSLATOR(compute_error)
EXC_TRANSLATOR(mask_error)
void export_valexpr()
{
class_< details_t > ("Details", init<const entry_t&>())
.def(init<const transaction_t&>())
.def(init<const account_t&>())
.add_property("entry",
make_getter(&details_t::entry,
return_value_policy<reference_existing_object>()))
.add_property("xact",
make_getter(&details_t::xact,
return_value_policy<reference_existing_object>()))
.add_property("account",
make_getter(&details_t::account,
return_value_policy<reference_existing_object>()))
;
class_< value_expr_t > ("ValueExpr", init<value_expr_t::kind_t>())
.def("compute", py_compute_1)
.def("compute", py_compute<account_t>)
.def("compute", py_compute<entry_t>)
.def("compute", py_compute<transaction_t>)
;
def("parse_value_expr", py_parse_value_expr_1,
return_value_policy<manage_new_object>());
def("parse_value_expr", py_parse_value_expr_2,
return_value_policy<manage_new_object>());
class_< item_predicate<transaction_t> >
("TransactionPredicate", init<std::string>())
.def("__call__", &item_predicate<transaction_t>::operator())
;
class_< item_predicate<account_t> >
("AccountPredicate", init<std::string>())
.def("__call__", &item_predicate<account_t>::operator())
;
#define EXC_TRANSLATE(type) \
register_exception_translator<type>(&exc_translate_ ## type);
EXC_TRANSLATE(value_expr_error);
EXC_TRANSLATE(compute_error);
EXC_TRANSLATE(mask_error);
}
#endif // USE_BOOST_PYTHON
#ifdef TEST
int main(int argc, char *argv[])
{
ledger::dump_value_expr(std::cout, ledger::parse_value_expr(argv[1]));
std::cout << std::endl;
}
#endif // TEST