ledger/binary.cc
2008-04-13 02:41:27 -04:00

1096 lines
30 KiB
C++

#include "journal.h"
#include "valexpr.h"
#include "binary.h"
#include <fstream>
#include <ctime>
#include <sys/stat.h>
#define TIMELOG_SUPPORT 1
namespace ledger {
static unsigned long binary_magic_number = 0xFFEED765;
#ifdef DEBUG_ENABLED
static unsigned long format_version = 0x0002050b;
#else
static unsigned long format_version = 0x0002050a;
#endif
static account_t ** accounts;
static account_t ** accounts_next;
static unsigned int account_index;
static commodity_t ** commodities;
static commodity_t ** commodities_next;
static unsigned int commodity_index;
extern char * bigints;
extern char * bigints_next;
extern unsigned int bigints_index;
extern unsigned int bigints_count;
#if DEBUG_LEVEL >= ALPHA
#define read_binary_guard(in, id) { \
unsigned short guard; \
in.read((char *)&guard, sizeof(guard)); \
assert(guard == id); \
}
#else
#define read_binary_guard(in, id)
#endif
template <typename T>
inline void read_binary_number(std::istream& in, T& num) {
in.read((char *)&num, sizeof(num));
}
template <typename T>
inline void read_binary_long(std::istream& in, T& num) {
unsigned char len;
in.read((char *)&len, sizeof(unsigned char));
num = 0;
unsigned char temp;
if (len > 3) {
in.read((char *)&temp, sizeof(unsigned char));
num |= ((unsigned long)temp) << 24;
}
if (len > 2) {
in.read((char *)&temp, sizeof(unsigned char));
num |= ((unsigned long)temp) << 16;
}
if (len > 1) {
in.read((char *)&temp, sizeof(unsigned char));
num |= ((unsigned long)temp) << 8;
}
in.read((char *)&temp, sizeof(unsigned char));
num |= ((unsigned long)temp);
}
template <typename T>
inline T read_binary_number(std::istream& in) {
T num;
read_binary_number(in, num);
return num;
}
template <typename T>
inline T read_binary_long(std::istream& in) {
T num;
read_binary_long(in, num);
return num;
}
inline void read_binary_string(std::istream& in, std::string& str)
{
read_binary_guard(in, 0x3001);
unsigned char len;
read_binary_number(in, len);
if (len == 0xff) {
unsigned short slen;
read_binary_number(in, slen);
char * buf = new char[slen + 1];
in.read(buf, slen);
buf[slen] = '\0';
str = buf;
delete[] buf;
}
else if (len) {
char buf[256];
in.read(buf, len);
buf[len] = '\0';
str = buf;
} else {
str = "";
}
read_binary_guard(in, 0x3002);
}
inline std::string read_binary_string(std::istream& in)
{
std::string temp;
read_binary_string(in, temp);
return temp;
}
template <typename T>
inline void read_binary_number(char *& data, T& num) {
num = *((T *) data);
data += sizeof(T);
}
template <typename T>
inline void read_binary_long(char *& data, T& num) {
unsigned char len = *((unsigned char *)data++);
num = 0;
unsigned char temp;
if (len > 3) {
temp = *((unsigned char *)data++);
num |= ((unsigned long)temp) << 24;
}
if (len > 2) {
temp = *((unsigned char *)data++);
num |= ((unsigned long)temp) << 16;
}
if (len > 1) {
temp = *((unsigned char *)data++);
num |= ((unsigned long)temp) << 8;
}
temp = *((unsigned char *)data++);
num |= ((unsigned long)temp);
}
template <typename T>
inline T read_binary_number(char *& data) {
T num;
read_binary_number(data, num);
return num;
}
template <typename T>
inline T read_binary_long(char *& data) {
T num;
read_binary_long(data, num);
return num;
}
inline void read_binary_string(char *& data, std::string& str)
{
#if DEBUG_LEVEL >= ALPHA
unsigned short guard;
guard = *((unsigned short *) data);
data += sizeof(unsigned short);
assert(guard == 0x3001);
#endif
unsigned char len = *data++;
if (len == 0xff) {
unsigned short slen = *((unsigned short *) data);
str = std::string(data + sizeof(unsigned short), slen);
data += sizeof(unsigned short) + slen;
}
else if (len) {
str = std::string(data, len);
data += len;
}
else {
str = "";
}
#if DEBUG_LEVEL >= ALPHA
guard = *((unsigned short *) data);
data += sizeof(unsigned short);
assert(guard == 0x3002);
#endif
}
inline std::string read_binary_string(char *& data)
{
std::string temp;
read_binary_string(data, temp);
return temp;
}
inline void read_binary_string(char *& data, std::string * str)
{
#if DEBUG_LEVEL >= ALPHA
unsigned short guard;
guard = *((unsigned short *) data);
data += sizeof(unsigned short);
assert(guard == 0x3001);
#endif
unsigned char len = *data++;
if (len == 0xff) {
unsigned short slen = *((unsigned short *) data);
new(str) std::string(data + sizeof(unsigned short), slen);
data += sizeof(unsigned short) + slen;
}
else if (len) {
new(str) std::string(data, len);
data += len;
}
else {
new(str) std::string("");
}
#if DEBUG_LEVEL >= ALPHA
guard = *((unsigned short *) data);
data += sizeof(unsigned short);
assert(guard == 0x3002);
#endif
}
inline void read_binary_amount(char *& data, amount_t& amt)
{
commodity_t::ident_t ident;
read_binary_long(data, ident);
if (ident == 0xffffffff)
amt.commodity_ = NULL;
else if (ident == 0)
amt.commodity_ = commodity_t::null_commodity;
else
amt.commodity_ = commodities[ident - 1];
amt.read_quantity(data);
}
inline void read_binary_mask(char *& data, mask_t *& mask)
{
bool exclude;
read_binary_number(data, exclude);
std::string pattern;
read_binary_string(data, pattern);
mask = new mask_t(pattern);
mask->exclude = exclude;
}
inline void read_binary_value_expr(char *& data, value_expr_t *& expr)
{
if (read_binary_number<unsigned char>(data) == 0) {
expr = NULL;
return;
}
value_expr_t::kind_t kind;
read_binary_number(data, kind);
expr = new value_expr_t(kind);
if (kind > value_expr_t::TERMINALS) {
read_binary_value_expr(data, expr->left);
if (expr->left) expr->left->acquire();
}
switch (expr->kind) {
case value_expr_t::CONSTANT_T:
read_binary_number(data, expr->constant_t);
break;
case value_expr_t::CONSTANT_I:
read_binary_long(data, expr->constant_i);
break;
case value_expr_t::CONSTANT_A:
expr->constant_a = new amount_t();
read_binary_amount(data, *(expr->constant_a));
break;
case value_expr_t::CONSTANT_V:
assert(0);
break;
case value_expr_t::F_CODE_MASK:
case value_expr_t::F_PAYEE_MASK:
case value_expr_t::F_NOTE_MASK:
case value_expr_t::F_ACCOUNT_MASK:
case value_expr_t::F_SHORT_ACCOUNT_MASK:
case value_expr_t::F_COMMODITY_MASK:
if (read_binary_number<unsigned char>(data) == 1)
read_binary_mask(data, expr->mask);
break;
default:
if (kind > value_expr_t::TERMINALS) {
read_binary_value_expr(data, expr->right);
if (expr->right) expr->right->acquire();
}
break;
}
}
inline void read_binary_transaction(char *& data, transaction_t * xact)
{
read_binary_long(data, xact->_date);
read_binary_long(data, xact->_date_eff);
xact->account = accounts[read_binary_long<account_t::ident_t>(data) - 1];
if (read_binary_number<char>(data) == 1) {
read_binary_value_expr(data, xact->amount_expr);
if (xact->amount_expr) xact->amount_expr->acquire();
} else {
read_binary_amount(data, xact->amount);
}
if (*data++ == 1) {
xact->cost = new amount_t;
if (read_binary_number<char>(data) == 1) {
read_binary_value_expr(data, xact->cost_expr);
if (xact->cost_expr) xact->cost_expr->acquire();
} else {
read_binary_amount(data, *xact->cost);
}
} else {
xact->cost = NULL;
}
read_binary_number(data, xact->state);
read_binary_number(data, xact->flags);
xact->flags |= TRANSACTION_BULK_ALLOC;
read_binary_string(data, &xact->note);
xact->beg_pos = read_binary_long<unsigned long>(data);
read_binary_long(data, xact->beg_line);
xact->end_pos = read_binary_long<unsigned long>(data);
read_binary_long(data, xact->end_line);
xact->data = NULL;
if (xact->amount_expr)
compute_amount(xact->amount_expr, xact->amount, *xact);
if (xact->cost_expr)
compute_amount(xact->cost_expr, *xact->cost, *xact);
}
inline void read_binary_entry_base(char *& data, entry_base_t * entry,
transaction_t *& xact_pool, bool& finalize)
{
read_binary_long(data, entry->src_idx);
entry->beg_pos = read_binary_long<unsigned long>(data);
read_binary_long(data, entry->beg_line);
entry->end_pos = read_binary_long<unsigned long>(data);
read_binary_long(data, entry->end_line);
bool ignore_calculated = read_binary_number<char>(data) == 1;
for (unsigned long i = 0, count = read_binary_long<unsigned long>(data);
i < count;
i++) {
DEBUG_PRINT("ledger.memory.ctors", "ctor transaction_t");
read_binary_transaction(data, xact_pool);
if (ignore_calculated && xact_pool->flags & TRANSACTION_CALCULATED)
finalize = true;
entry->add_transaction(xact_pool++);
}
}
inline void read_binary_entry(char *& data, entry_t * entry,
transaction_t *& xact_pool, bool& finalize)
{
read_binary_entry_base(data, entry, xact_pool, finalize);
read_binary_long(data, entry->_date);
read_binary_long(data, entry->_date_eff);
read_binary_string(data, &entry->code);
read_binary_string(data, &entry->payee);
}
inline void read_binary_auto_entry(char *& data, auto_entry_t * entry,
transaction_t *& xact_pool)
{
bool ignore;
read_binary_entry_base(data, entry, xact_pool, ignore);
value_expr_t * expr;
read_binary_value_expr(data, expr);
// the item_predicate constructor will acquire the reference
entry->predicate = new item_predicate<transaction_t>(expr);
}
inline void read_binary_period_entry(char *& data, period_entry_t * entry,
transaction_t *& xact_pool, bool& finalize)
{
read_binary_entry_base(data, entry, xact_pool, finalize);
read_binary_string(data, &entry->period_string);
std::istringstream stream(entry->period_string);
entry->period.parse(stream);
}
inline commodity_t * read_binary_commodity(char *& data)
{
commodity_t * commodity = new commodity_t;
*commodities_next++ = commodity;
read_binary_string(data, *(const_cast<std::string *>(&commodity->symbol)));
read_binary_number(data, commodity->quote);
read_binary_string(data, commodity->name_);
read_binary_string(data, commodity->note_);
read_binary_number(data, commodity->precision_);
read_binary_number(data, commodity->flags_);
read_binary_long(data, commodity->ident);
return commodity;
}
inline void read_binary_commodity_extra(char *& data,
commodity_t::ident_t ident)
{
commodity_t * commodity = commodities[ident];
for (unsigned long i = 0, count = read_binary_long<unsigned long>(data);
i < count;
i++) {
std::time_t when;
read_binary_long(data, when);
amount_t amt;
read_binary_amount(data, amt);
// Upon insertion, amt will be copied, which will cause the amount
// to be duplicated (and thus not lost when the journal's
// item_pool is deleted.
if (! commodity->history_)
commodity->history_ = new commodity_t::history_t;
commodity->history_->prices.insert(history_pair(when, amt));
}
if (commodity->history_)
read_binary_long(data, commodity->history_->last_lookup);
unsigned char flag;
flag = read_binary_number<unsigned char>(data);
if (flag) {
amount_t amt;
read_binary_amount(data, amt);
commodity->smaller_ = new amount_t(amt);
}
flag = read_binary_number<unsigned char>(data);
if (flag) {
amount_t amt;
read_binary_amount(data, amt);
commodity->larger_ = new amount_t(amt);
}
flag = read_binary_number<unsigned char>(data);
if (flag) {
amount_t amt;
read_binary_amount(data, amt);
commodity->price = new amount_t(amt);
commodity->base =
commodities[read_binary_long<commodity_t::ident_t>(data) - 1];
}
}
inline
account_t * read_binary_account(char *& data, journal_t * journal,
account_t * master = NULL)
{
account_t * acct = new account_t(NULL);
*accounts_next++ = acct;
acct->ident = read_binary_long<account_t::ident_t>(data);
acct->journal = journal;
account_t::ident_t id;
read_binary_long(data, id); // parent id
if (id == 0xffffffff)
acct->parent = NULL;
else
acct->parent = accounts[id - 1];
read_binary_string(data, acct->name);
read_binary_string(data, acct->note);
read_binary_number(data, acct->depth);
// If all of the subaccounts will be added to a different master
// account, throw away what we've learned about the recorded
// journal's own master account.
if (master) {
delete acct;
acct = master;
}
for (account_t::ident_t i = 0,
count = read_binary_long<account_t::ident_t>(data);
i < count;
i++) {
account_t * child = read_binary_account(data, journal);
child->parent = acct;
acct->add_account(child);
}
return acct;
}
unsigned int read_binary_journal(std::istream& in,
const std::string& file,
journal_t * journal,
account_t * master)
{
account_index =
commodity_index = 0;
// Read in the files that participated in this journal, so that they
// can be checked for changes on reading.
if (! file.empty()) {
for (unsigned short i = 0,
count = read_binary_number<unsigned short>(in);
i < count;
i++) {
std::string path = read_binary_string(in);
if (i == 0 && path != file)
return 0;
std::time_t old_mtime;
read_binary_long(in, old_mtime);
struct stat info;
stat(path.c_str(), &info);
if (std::difftime(info.st_mtime, old_mtime) > 0)
return 0;
journal->sources.push_back(path);
}
// Make sure that the cache uses the same price database,
// otherwise it means that LEDGER_PRICE_DB has been changed, and
// we should ignore this cache file.
if (read_binary_string(in) != journal->price_db)
return 0;
}
// Read all of the data in at once, so that we're just dealing with
// a big data buffer.
unsigned long data_size = read_binary_number<unsigned long>(in);
char * data_pool = new char[data_size];
char * data = data_pool;
in.read(data, data_size);
// Read in the accounts
account_t::ident_t a_count = read_binary_long<account_t::ident_t>(data);
accounts = accounts_next = new account_t *[a_count];
journal->master = read_binary_account(data, journal, master);
if (read_binary_number<bool>(data))
journal->basket = accounts[read_binary_long<account_t::ident_t>(data) - 1];
// Allocate the memory needed for the entries and transactions in
// one large block, which is then chopped up and custom constructed
// as necessary.
unsigned long count = read_binary_long<unsigned long>(data);
unsigned long auto_count = read_binary_long<unsigned long>(data);
unsigned long period_count = read_binary_long<unsigned long>(data);
unsigned long xact_count = read_binary_number<unsigned long>(data);
unsigned long bigint_count = read_binary_number<unsigned long>(data);
std::size_t pool_size = (sizeof(entry_t) * count +
sizeof(transaction_t) * xact_count +
sizeof_bigint_t() * bigint_count);
char * item_pool = new char[pool_size];
entry_t * entry_pool = (entry_t *) item_pool;
transaction_t * xact_pool = (transaction_t *) (item_pool +
sizeof(entry_t) * count);
bigints_index = 0;
bigints = bigints_next = (item_pool + sizeof(entry_t) * count +
sizeof(transaction_t) * xact_count);
// Read in the commodities
commodity_t::ident_t c_count = read_binary_long<commodity_t::ident_t>(data);
commodities = commodities_next = new commodity_t *[c_count];
for (commodity_t::ident_t i = 0; i < c_count; i++) {
commodity_t * commodity = read_binary_commodity(data);
if (! (commodity->flags_ & COMMODITY_STYLE_BUILTIN)) {
if (commodity->symbol == "") {
commodity_t::commodities.erase(commodity->symbol);
delete commodity_t::null_commodity;
commodity_t::null_commodity = commodity;
}
std::pair<commodities_map::iterator, bool> result =
commodity_t::commodities.insert(commodities_pair(commodity->symbol,
commodity));
if (! result.second)
throw error(std::string("Failed to read commodity from cache: ") +
commodity->symbol);
}
}
for (commodity_t::ident_t i = 0; i < c_count; i++)
read_binary_commodity_extra(data, i);
commodity_t::ident_t ident;
read_binary_long(data, ident);
if (ident == 0xffffffff || ident == 0)
commodity_t::default_commodity = NULL;
else
commodity_t::default_commodity = commodities[ident - 1];
// Read in the entries and transactions
for (unsigned long i = 0; i < count; i++) {
new(entry_pool) entry_t;
bool finalize = false;
read_binary_entry(data, entry_pool, xact_pool, finalize);
entry_pool->journal = journal;
if (finalize && ! entry_pool->finalize())
continue;
journal->entries.push_back(entry_pool++);
}
for (unsigned long i = 0; i < auto_count; i++) {
auto_entry_t * auto_entry = new auto_entry_t;
read_binary_auto_entry(data, auto_entry, xact_pool);
auto_entry->journal = journal;
journal->auto_entries.push_back(auto_entry);
}
for (unsigned long i = 0; i < period_count; i++) {
period_entry_t * period_entry = new period_entry_t;
bool finalize = false;
read_binary_period_entry(data, period_entry, xact_pool, finalize);
period_entry->journal = journal;
if (finalize && ! period_entry->finalize())
continue;
journal->period_entries.push_back(period_entry);
}
// Clean up and return the number of entries read
journal->item_pool = item_pool;
journal->item_pool_end = item_pool + pool_size;
delete[] accounts;
delete[] commodities;
delete[] data_pool;
VALIDATE(journal->valid());
return count;
}
bool binary_parser_t::test(std::istream& in) const
{
if (read_binary_number<unsigned long>(in) == binary_magic_number &&
read_binary_number<unsigned long>(in) == format_version)
return true;
in.clear();
in.seekg(0, std::ios::beg);
return false;
}
unsigned int binary_parser_t::parse(std::istream& in,
config_t& config,
journal_t * journal,
account_t * master,
const std::string * original_file)
{
return read_binary_journal(in, original_file ? *original_file : "",
journal, master);
}
#if DEBUG_LEVEL >= ALPHA
#define write_binary_guard(in, id) { \
unsigned short guard = id; \
out.write((char *)&guard, sizeof(guard)); \
}
#else
#define write_binary_guard(in, id)
#endif
template <typename T>
inline void write_binary_number(std::ostream& out, T num) {
out.write((char *)&num, sizeof(num));
}
template <typename T>
inline void write_binary_long(std::ostream& out, T num) {
unsigned char len = 4;
if (((unsigned long)num) < 0x00000100UL)
len = 1;
else if (((unsigned long)num) < 0x00010000UL)
len = 2;
else if (((unsigned long)num) < 0x01000000UL)
len = 3;
out.write((char *)&len, sizeof(unsigned char));
if (len > 3) {
unsigned char temp = (((unsigned long)num) & 0xFF000000UL) >> 24;
out.write((char *)&temp, sizeof(unsigned char));
}
if (len > 2) {
unsigned char temp = (((unsigned long)num) & 0x00FF0000UL) >> 16;
out.write((char *)&temp, sizeof(unsigned char));
}
if (len > 1) {
unsigned char temp = (((unsigned long)num) & 0x0000FF00UL) >> 8;
out.write((char *)&temp, sizeof(unsigned char));
}
unsigned char temp = (((unsigned long)num) & 0x000000FFUL);
out.write((char *)&temp, sizeof(unsigned char));
}
inline void write_binary_string(std::ostream& out, const std::string& str)
{
write_binary_guard(out, 0x3001);
unsigned long len = str.length();
if (len > 255) {
assert(len < 65536);
write_binary_number<unsigned char>(out, 0xff);
write_binary_number<unsigned short>(out, len);
} else {
write_binary_number<unsigned char>(out, len);
}
if (len)
out.write(str.c_str(), len);
write_binary_guard(out, 0x3002);
}
void write_binary_amount(std::ostream& out, const amount_t& amt)
{
if (amt.commodity_)
write_binary_long(out, amt.commodity().ident);
else
write_binary_long<commodity_t::ident_t>(out, 0xffffffff);
amt.write_quantity(out);
}
void write_binary_mask(std::ostream& out, mask_t * mask)
{
write_binary_number(out, mask->exclude);
write_binary_string(out, mask->pattern);
}
void write_binary_value_expr(std::ostream& out, const value_expr_t * expr)
{
if (expr == NULL) {
write_binary_number<unsigned char>(out, 0);
return;
}
write_binary_number<unsigned char>(out, 1);
write_binary_number(out, expr->kind);
if (expr->kind > value_expr_t::TERMINALS)
write_binary_value_expr(out, expr->left);
switch (expr->kind) {
case value_expr_t::CONSTANT_T:
write_binary_number(out, expr->constant_t);
break;
case value_expr_t::CONSTANT_I:
write_binary_long(out, expr->constant_i);
break;
case value_expr_t::CONSTANT_A:
write_binary_amount(out, *(expr->constant_a));
break;
case value_expr_t::CONSTANT_V:
assert(0);
break;
case value_expr_t::F_CODE_MASK:
case value_expr_t::F_PAYEE_MASK:
case value_expr_t::F_NOTE_MASK:
case value_expr_t::F_ACCOUNT_MASK:
case value_expr_t::F_SHORT_ACCOUNT_MASK:
case value_expr_t::F_COMMODITY_MASK:
if (expr->mask) {
write_binary_number<char>(out, 1);
write_binary_mask(out, expr->mask);
} else {
write_binary_number<char>(out, 0);
}
break;
default:
if (expr->kind > value_expr_t::TERMINALS)
write_binary_value_expr(out, expr->right);
break;
}
}
void write_binary_transaction(std::ostream& out, transaction_t * xact,
bool ignore_calculated)
{
write_binary_long(out, xact->_date);
write_binary_long(out, xact->_date_eff);
write_binary_long(out, xact->account->ident);
if (xact->amount_expr != NULL) {
write_binary_number<char>(out, 1);
write_binary_value_expr(out, xact->amount_expr);
} else {
write_binary_number<char>(out, 0);
if (ignore_calculated && xact->flags & TRANSACTION_CALCULATED)
write_binary_amount(out, amount_t());
else
write_binary_amount(out, xact->amount);
}
if (xact->cost &&
(! (ignore_calculated && xact->flags & TRANSACTION_CALCULATED))) {
write_binary_number<char>(out, 1);
if (xact->cost_expr != NULL) {
write_binary_number<char>(out, 1);
write_binary_value_expr(out, xact->cost_expr);
} else {
write_binary_number<char>(out, 0);
write_binary_amount(out, *xact->cost);
}
} else {
write_binary_number<char>(out, 0);
}
write_binary_number(out, xact->state);
write_binary_number(out, xact->flags);
write_binary_string(out, xact->note);
write_binary_long(out, xact->beg_pos);
write_binary_long(out, xact->beg_line);
write_binary_long(out, xact->end_pos);
write_binary_long(out, xact->end_line);
}
void write_binary_entry_base(std::ostream& out, entry_base_t * entry)
{
write_binary_long(out, entry->src_idx);
write_binary_long(out, entry->beg_pos);
write_binary_long(out, entry->beg_line);
write_binary_long(out, entry->end_pos);
write_binary_long(out, entry->end_line);
bool ignore_calculated = false;
for (transactions_list::const_iterator i = entry->transactions.begin();
i != entry->transactions.end();
i++)
if ((*i)->amount_expr || (*i)->cost_expr) {
ignore_calculated = true;
break;
}
write_binary_number<char>(out, ignore_calculated ? 1 : 0);
write_binary_long(out, entry->transactions.size());
for (transactions_list::const_iterator i = entry->transactions.begin();
i != entry->transactions.end();
i++)
write_binary_transaction(out, *i, ignore_calculated);
}
void write_binary_entry(std::ostream& out, entry_t * entry)
{
write_binary_entry_base(out, entry);
write_binary_long(out, entry->_date);
write_binary_long(out, entry->_date_eff);
write_binary_string(out, entry->code);
write_binary_string(out, entry->payee);
}
void write_binary_auto_entry(std::ostream& out, auto_entry_t * entry)
{
write_binary_entry_base(out, entry);
write_binary_value_expr(out, entry->predicate->predicate);
}
void write_binary_period_entry(std::ostream& out, period_entry_t * entry)
{
write_binary_entry_base(out, entry);
write_binary_string(out, entry->period_string);
}
void write_binary_commodity(std::ostream& out, commodity_t * commodity)
{
write_binary_string(out, commodity->symbol);
write_binary_number(out, commodity->quote);
write_binary_string(out, commodity->name_);
write_binary_string(out, commodity->note_);
write_binary_number(out, commodity->precision_);
write_binary_number(out, commodity->flags_);
commodity->ident = ++commodity_index;
write_binary_long(out, commodity->ident);
}
void write_binary_commodity_extra(std::ostream& out, commodity_t * commodity)
{
if (! commodity->history_) {
write_binary_long<unsigned long>(out, 0);
} else {
write_binary_long<unsigned long>(out, commodity->history_->prices.size());
for (history_map::const_iterator i = commodity->history_->prices.begin();
i != commodity->history_->prices.end();
i++) {
write_binary_long(out, (*i).first);
write_binary_amount(out, (*i).second);
}
write_binary_long(out, commodity->history_->last_lookup);
}
if (commodity->smaller_) {
write_binary_number<unsigned char>(out, 1);
write_binary_amount(out, *commodity->smaller_);
} else {
write_binary_number<unsigned char>(out, 0);
}
if (commodity->larger_) {
write_binary_number<unsigned char>(out, 1);
write_binary_amount(out, *commodity->larger_);
} else {
write_binary_number<unsigned char>(out, 0);
}
if (commodity->price) {
write_binary_number<unsigned char>(out, 1);
write_binary_amount(out, *commodity->price);
write_binary_long(out, commodity->base->ident);
} else {
write_binary_number<unsigned char>(out, 0);
}
}
static inline account_t::ident_t count_accounts(account_t * account)
{
account_t::ident_t count = 1;
for (accounts_map::iterator i = account->accounts.begin();
i != account->accounts.end();
i++)
count += count_accounts((*i).second);
return count;
}
void write_binary_account(std::ostream& out, account_t * account)
{
account->ident = ++account_index;
write_binary_long(out, account->ident);
if (account->parent)
write_binary_long(out, account->parent->ident);
else
write_binary_long<account_t::ident_t>(out, 0xffffffff);
write_binary_string(out, account->name);
write_binary_string(out, account->note);
write_binary_number(out, account->depth);
write_binary_long<account_t::ident_t>(out, account->accounts.size());
for (accounts_map::iterator i = account->accounts.begin();
i != account->accounts.end();
i++)
write_binary_account(out, (*i).second);
}
void write_binary_journal(std::ostream& out, journal_t * journal)
{
account_index =
commodity_index = 0;
write_binary_number(out, binary_magic_number);
write_binary_number(out, format_version);
// Write out the files that participated in this journal, so that
// they can be checked for changes on reading.
if (journal->sources.size() == 0) {
write_binary_number<unsigned short>(out, 0);
} else {
write_binary_number<unsigned short>(out, journal->sources.size());
for (strings_list::const_iterator i = journal->sources.begin();
i != journal->sources.end();
i++) {
write_binary_string(out, *i);
struct stat info;
stat((*i).c_str(), &info);
write_binary_long(out, std::time_t(info.st_mtime));
}
// Write out the price database that relates to this data file, so
// that if it ever changes the cache can be invalidated.
write_binary_string(out, journal->price_db);
}
ostream_pos_type data_val = out.tellp();
write_binary_number<unsigned long>(out, 0);
// Write out the accounts
write_binary_long<account_t::ident_t>(out, count_accounts(journal->master));
write_binary_account(out, journal->master);
if (journal->basket) {
write_binary_number<bool>(out, true);
write_binary_long(out, journal->basket->ident);
} else {
write_binary_number<bool>(out, false);
}
// Write out the number of entries, transactions, and amounts
write_binary_long<unsigned long>(out, journal->entries.size());
write_binary_long<unsigned long>(out, journal->auto_entries.size());
write_binary_long<unsigned long>(out, journal->period_entries.size());
ostream_pos_type xacts_val = out.tellp();
write_binary_number<unsigned long>(out, 0);
ostream_pos_type bigints_val = out.tellp();
write_binary_number<unsigned long>(out, 0);
bigints_count = 0;
// Write out the commodities
write_binary_long<commodity_t::ident_t>
(out, commodity_t::commodities.size());
for (commodities_map::const_iterator i = commodity_t::commodities.begin();
i != commodity_t::commodities.end();
i++)
write_binary_commodity(out, (*i).second);
for (commodities_map::const_iterator i = commodity_t::commodities.begin();
i != commodity_t::commodities.end();
i++)
write_binary_commodity_extra(out, (*i).second);
if (commodity_t::default_commodity)
write_binary_long(out, commodity_t::default_commodity->ident);
else
write_binary_long<commodity_t::ident_t>(out, 0xffffffff);
// Write out the entries and transactions
unsigned long xact_count = 0;
for (entries_list::const_iterator i = journal->entries.begin();
i != journal->entries.end();
i++) {
write_binary_entry(out, *i);
xact_count += (*i)->transactions.size();
}
for (auto_entries_list::const_iterator i = journal->auto_entries.begin();
i != journal->auto_entries.end();
i++) {
write_binary_auto_entry(out, *i);
xact_count += (*i)->transactions.size();
}
for (period_entries_list::const_iterator i = journal->period_entries.begin();
i != journal->period_entries.end();
i++) {
write_binary_period_entry(out, *i);
xact_count += (*i)->transactions.size();
}
// Back-patch the count for amounts
unsigned long data_size = (((unsigned long) out.tellp()) -
((unsigned long) data_val) -
sizeof(unsigned long));
out.seekp(data_val);
write_binary_number<unsigned long>(out, data_size);
out.seekp(xacts_val);
write_binary_number<unsigned long>(out, xact_count);
out.seekp(bigints_val);
write_binary_number<unsigned long>(out, bigints_count);
}
} // namespace ledger