ledger/xpath.cc

2554 lines
60 KiB
C++

#include "xpath.h"
#include "debug.h"
#include "util.h"
#ifdef USE_BOOST_PYTHON
#include "py_eval.h"
#endif
#include <fstream>
namespace ledger {
namespace xml {
#ifndef THREADSAFE
xpath_t::token_t xpath_t::lookahead;
#endif
void xpath_t::token_t::parse_ident(std::istream& in)
{
if (in.eof()) {
kind = TOK_EOF;
return;
}
assert(in.good());
char c = peek_next_nonws(in);
if (in.eof()) {
kind = TOK_EOF;
return;
}
assert(in.good());
kind = IDENT;
length = 0;
char buf[256];
READ_INTO_(in, buf, 255, c, length,
std::isalnum(c) || c == '_' || c == '.');
switch (buf[0]) {
case 'a':
if (std::strcmp(buf, "and") == 0)
kind = KW_AND;
break;
case 'd':
if (std::strcmp(buf, "div") == 0)
kind = KW_DIV;
break;
case 'e':
if (std::strcmp(buf, "eq") == 0)
kind = EQUAL;
break;
case 'f':
if (std::strcmp(buf, "false") == 0) {
kind = VALUE;
value = false;
}
break;
case 'g':
if (std::strcmp(buf, "gt") == 0)
kind = GREATER;
else if (std::strcmp(buf, "ge") == 0)
kind = GREATEREQ;
break;
case 'i':
if (std::strcmp(buf, "is") == 0)
kind = EQUAL;
break;
case 'l':
if (std::strcmp(buf, "lt") == 0)
kind = LESS;
else if (std::strcmp(buf, "le") == 0)
kind = LESSEQ;
break;
case 'm':
if (std::strcmp(buf, "mod") == 0)
kind = KW_MOD;
break;
case 'n':
if (std::strcmp(buf, "ne") == 0)
kind = NEQUAL;
break;
case 'o':
if (std::strcmp(buf, "or") == 0)
kind = KW_OR;
break;
case 't':
if (std::strcmp(buf, "true") == 0) {
kind = VALUE;
value = true;
}
break;
case 'u':
if (std::strcmp(buf, "union") == 0)
kind = KW_UNION;
break;
}
if (kind == IDENT)
value.set_string(buf);
}
void xpath_t::token_t::next(std::istream& in, unsigned short flags)
{
if (in.eof()) {
kind = TOK_EOF;
return;
}
assert(in.good());
char c = peek_next_nonws(in);
if (in.eof()) {
kind = TOK_EOF;
return;
}
assert(in.good());
symbol[0] = c;
symbol[1] = '\0';
length = 1;
if (! (flags & XPATH_PARSE_RELAXED) &&
(std::isalpha(c) || c == '_')) {
parse_ident(in);
return;
}
switch (c) {
case '@':
in.get(c);
kind = AT_SYM;
break;
#if 0
case '$':
in.get(c);
kind = DOLLAR;
break;
#endif
case '(':
in.get(c);
kind = LPAREN;
break;
case ')':
in.get(c);
kind = RPAREN;
break;
case '[': {
in.get(c);
if (flags & XPATH_PARSE_ALLOW_DATE) {
char buf[256];
READ_INTO_(in, buf, 255, c, length, c != ']');
if (c != ']')
unexpected(c, ']');
in.get(c);
length++;
interval_t timespan(buf);
kind = VALUE;
value = timespan.first();
} else {
kind = LBRACKET;
}
break;
}
case ']': {
in.get(c);
kind = RBRACKET;
break;
}
case '"': {
in.get(c);
char buf[4096];
READ_INTO_(in, buf, 4095, c, length, c != '"');
if (c != '"')
unexpected(c, '"');
in.get(c);
length++;
kind = VALUE;
value.set_string(buf);
break;
}
case '{': {
in.get(c);
amount_t temp;
temp.parse(in, AMOUNT_PARSE_NO_MIGRATE);
in.get(c);
if (c != '}')
unexpected(c, '}');
length++;
kind = VALUE;
value = temp;
break;
}
case '!':
in.get(c);
c = in.peek();
if (c == '=') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = NEQUAL;
length = 2;
break;
}
#if 0
else if (c == '~') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = NMATCH;
length = 2;
break;
}
#endif
kind = EXCLAM;
break;
case '-':
in.get(c);
kind = MINUS;
break;
case '+':
in.get(c);
kind = PLUS;
break;
case '*':
in.get(c);
if (in.peek() == '*') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = POWER;
length = 2;
break;
}
kind = STAR;
break;
case '/':
in.get(c);
#if 0
if (flags & XPATH_PARSE_REGEXP) {
char buf[1024];
READ_INTO_(in, buf, 1023, c, length, c != '/');
in.get(c);
if (c != '/')
unexpected(c, '/');
kind = REGEXP;
value.set_string(buf);
break;
}
#endif
kind = SLASH;
break;
case '=':
in.get(c);
#if 0
if (in.peek() == '~') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = MATCH;
length = 2;
break;
}
#endif
kind = EQUAL;
break;
case '<':
in.get(c);
if (in.peek() == '=') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = LESSEQ;
length = 2;
break;
}
kind = LESS;
break;
case '>':
in.get(c);
if (in.peek() == '=') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = GREATEREQ;
length = 2;
break;
}
kind = GREATER;
break;
case '&':
in.get(c);
kind = AMPER;
break;
case '|':
in.get(c);
kind = PIPE;
break;
case '?':
in.get(c);
kind = QUESTION;
break;
case ':':
in.get(c);
if (in.peek() == '=') {
in.get(c);
symbol[1] = c;
symbol[2] = '\0';
kind = ASSIGN;
length = 2;
break;
}
kind = COLON;
break;
case ',':
in.get(c);
kind = COMMA;
break;
#if 0
case '%':
in.get(c);
kind = PERCENT;
break;
#endif
case '.':
in.get(c);
c = in.peek();
if (c == '.') {
in.get(c);
length++;
kind = DOTDOT;
break;
}
else if (! std::isdigit(c)) {
kind = DOT;
break;
}
in.unget(); // put the first '.' back
// fall through...
default:
if (! (flags & XPATH_PARSE_RELAXED)) {
kind = UNKNOWN;
} else {
amount_t temp;
unsigned long pos = 0;
// When in relaxed parsing mode, we want to migrate commodity
// flags so that any precision specified by the user updates the
// current maximum displayed precision.
try {
pos = (long)in.tellg();
unsigned char parse_flags = 0;
if (flags & XPATH_PARSE_NO_MIGRATE)
parse_flags |= AMOUNT_PARSE_NO_MIGRATE;
if (flags & XPATH_PARSE_NO_REDUCE)
parse_flags |= AMOUNT_PARSE_NO_REDUCE;
temp.parse(in, parse_flags);
kind = VALUE;
value = temp;
}
catch (amount_error * err) {
// If the amount had no commodity, it must be an unambiguous
// variable reference
if (std::strcmp(err->what(), "No quantity specified for amount") == 0) {
in.clear();
in.seekg(pos, std::ios::beg);
c = in.peek();
assert(! (std::isdigit(c) || c == '.'));
parse_ident(in);
} else {
throw err;
}
}
}
break;
}
}
void xpath_t::token_t::rewind(std::istream& in)
{
for (int i = 0; i < length; i++)
in.unget();
}
void xpath_t::token_t::unexpected()
{
switch (kind) {
case TOK_EOF:
throw new parse_error("Unexpected end of expression");
case IDENT:
throw new parse_error(std::string("Unexpected symbol '") +
value.to_string() + "'");
case VALUE:
throw new parse_error(std::string("Unexpected value '") +
value.to_string() + "'");
default:
throw new parse_error(std::string("Unexpected operator '") + symbol + "'");
}
}
void xpath_t::token_t::unexpected(char c, char wanted)
{
if ((unsigned char) c == 0xff) {
if (wanted)
throw new parse_error(std::string("Missing '") + wanted + "'");
else
throw new parse_error("Unexpected end");
} else {
if (wanted)
throw new parse_error(std::string("Invalid char '") + c +
"' (wanted '" + wanted + "')");
else
throw new parse_error(std::string("Invalid char '") + c + "'");
}
}
xpath_t::op_t * xpath_t::wrap_value(const value_t& val)
{
xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::VALUE);
temp->valuep = new value_t(val);
return temp;
}
xpath_t::op_t * xpath_t::wrap_sequence(value_t::sequence_t * val)
{
if (val->size() == 0) {
return wrap_value(false);
}
else if (val->size() == 1) {
return wrap_value(val->front());
}
else {
xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::VALUE);
temp->valuep = new value_t(val);
return temp;
}
}
xpath_t::op_t * xpath_t::wrap_functor(functor_t * fobj)
{
xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::FUNCTOR);
temp->functor = fobj;
return temp;
}
#if 0
xpath_t::op_t * xpath_t::wrap_mask(const std::string& pattern)
{
xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::MASK);
temp->mask = new mask_t(pattern);
return temp;
}
#endif
void xpath_t::scope_t::define(const std::string& name, op_t * def)
{
DEBUG_PRINT("ledger.xpath.syms", "Defining '" << name << "' = " << def);
std::pair<symbol_map::iterator, bool> result
= symbols.insert(symbol_pair(name, def));
if (! result.second) {
symbol_map::iterator i = symbols.find(name);
assert(i != symbols.end());
(*i).second->release();
symbols.erase(i);
std::pair<symbol_map::iterator, bool> result
= symbols.insert(symbol_pair(name, def));
if (! result.second)
throw new compile_error(std::string("Redefinition of '") +
name + "' in same scope");
}
def->acquire();
}
xpath_t::op_t *
xpath_t::scope_t::lookup(const std::string& name)
{
symbol_map::const_iterator i = symbols.find(name);
if (i != symbols.end())
return (*i).second;
else if (parent)
return parent->lookup(name);
return NULL;
}
void xpath_t::scope_t::define(const std::string& name, functor_t * def) {
define(name, wrap_functor(def));
}
bool xpath_t::function_scope_t::resolve(const std::string& name,
value_t& result,
scope_t * locals)
{
switch (name[0]) {
case 'l':
if (name == "last") {
if (sequence)
result = (long)sequence->size();
else
result = 1L;
return true;
}
break;
case 'p':
if (name == "position") {
result = (long)index + 1;
return true;
}
break;
case 't':
if (name == "text") {
if (value->type == value_t::XML_NODE)
result.set_string(value->to_xml_node()->text());
else
throw new calc_error("Attempt to call text() on a non-node value");
return true;
}
break;
}
return scope_t::resolve(name, result, locals);
}
xpath_t::op_t::~op_t()
{
TRACE_DTOR("xpath_t::op_t");
DEBUG_PRINT("ledger.xpath.memory", "Destroying " << this);
assert(refc == 0);
switch (kind) {
case VALUE:
assert(! left);
assert(valuep);
delete valuep;
break;
case NODE_NAME:
case FUNC_NAME:
case ATTR_NAME:
case VAR_NAME:
assert(! left);
assert(name);
delete name;
break;
case ARG_INDEX:
break;
case FUNCTOR:
assert(! left);
assert(functor);
delete functor;
break;
#if 0
case MASK:
assert(! left);
assert(mask);
delete mask;
break;
#endif
default:
assert(kind < LAST);
if (left)
left->release();
if (kind > TERMINALS && right)
right->release();
break;
}
}
void xpath_t::op_t::get_value(value_t& result) const
{
switch (kind) {
case VALUE:
result = *valuep;
break;
case ARG_INDEX:
result = (long)arg_index;
break;
default: {
std::ostringstream buf;
write(buf);
throw new calc_error
(std::string("Cannot determine value of expression symbol '") +
buf.str() + "'");
}
}
}
xpath_t::op_t *
xpath_t::parse_value_term(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node;
token_t& tok = next_token(in, flags);
switch (tok.kind) {
case token_t::VALUE:
node.reset(new op_t(op_t::VALUE));
node->valuep = new value_t(tok.value);
break;
case token_t::IDENT: {
#ifdef USE_BOOST_PYTHON
if (tok.value->to_string() == "lambda") // special
try {
char c, buf[4096];
std::strcpy(buf, "lambda ");
READ_INTO(in, &buf[7], 4000, c, true);
op_t * eval = new op_t(op_t::O_EVAL);
op_t * lambda = new op_t(op_t::FUNCTOR);
lambda->functor = new python_functor_t(python_eval(buf));
eval->set_left(lambda);
op_t * sym = new op_t(op_t::SYMBOL);
sym->name = new std::string("__ptr");
eval->set_right(sym);
node.reset(eval);
goto done;
}
catch(const boost::python::error_already_set&) {
throw new parse_error("Error parsing lambda expression");
}
#endif
std::string ident = tok.value.to_string();
if (std::isdigit(ident[0])) {
node.reset(new op_t(op_t::ARG_INDEX));
node->arg_index = std::atol(ident.c_str());
} else {
node.reset(new op_t(op_t::NODE_NAME));
node->name = new std::string(ident);
}
// An identifier followed by ( represents a function call
tok = next_token(in, flags);
if (tok.kind == token_t::LPAREN) {
node->kind = op_t::FUNC_NAME;
std::auto_ptr<op_t> call_node;
call_node.reset(new op_t(op_t::O_EVAL));
call_node->set_left(node.release());
call_node->set_right(parse_value_expr(in, flags | XPATH_PARSE_PARTIAL));
tok = next_token(in, flags);
if (tok.kind != token_t::RPAREN)
tok.unexpected(); // jww (2006-09-09): wanted )
node.reset(call_node.release());
} else {
push_token(tok);
}
break;
}
case token_t::AT_SYM:
tok = next_token(in, flags);
if (tok.kind != token_t::IDENT)
throw parse_error("@ symbol must be followed by attribute name");
node.reset(new op_t(op_t::ATTR_NAME));
node->name = new std::string(tok.value.to_string());
break;
#if 0
case token_t::DOLLAR:
tok = next_token(in, flags);
if (tok.kind != token_t::IDENT)
throw parse_error("$ symbol must be followed by variable name");
node.reset(new op_t(op_t::VAR_NAME));
node->name = new std::string(tok.value.to_string());
break;
#endif
case token_t::DOT:
node.reset(new op_t(op_t::NODE_ID));
node->name_id = document_t::CURRENT;
break;
case token_t::DOTDOT:
node.reset(new op_t(op_t::NODE_ID));
node->name_id = document_t::PARENT;
break;
case token_t::SLASH:
node.reset(new op_t(op_t::NODE_ID));
node->name_id = document_t::ROOT;
break;
case token_t::STAR:
node.reset(new op_t(op_t::NODE_ID));
node->name_id = document_t::ALL;
break;
case token_t::LPAREN:
node.reset(parse_value_expr(in, flags | XPATH_PARSE_PARTIAL));
if (! node.get())
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
tok = next_token(in, flags);
if (tok.kind != token_t::RPAREN)
tok.unexpected(); // jww (2006-09-09): wanted )
break;
#if 0
case token_t::REGEXP:
node.reset(wrap_mask(tok.value.to_string()));
break;
#endif
default:
push_token(tok);
break;
}
done:
return node.release();
}
xpath_t::op_t *
xpath_t::parse_predicate_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_value_term(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
while (tok.kind == token_t::LBRACKET) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_PRED));
node->set_left(prev.release());
node->set_right(parse_value_expr(in, flags | XPATH_PARSE_PARTIAL));
if (! node->right)
throw new parse_error("[ operator not followed by valid expression");
tok = next_token(in, flags);
if (tok.kind != token_t::RBRACKET)
tok.unexpected(); // jww (2006-09-09): wanted ]
tok = next_token(in, flags);
}
push_token(tok);
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_path_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_predicate_expr(in, flags));
if (node.get()) {
// If the beginning of the path was /, just put it back; this
// makes parsing much simpler.
if (node->kind == op_t::NODE_ID && node->name_id == document_t::ROOT)
push_token();
token_t& tok = next_token(in, flags);
while (tok.kind == token_t::SLASH) {
std::auto_ptr<op_t> prev(node.release());
tok = next_token(in, flags);
node.reset(new op_t(tok.kind == token_t::SLASH ?
op_t::O_RFIND : op_t::O_FIND));
if (tok.kind != token_t::SLASH)
push_token(tok);
node->set_left(prev.release());
node->set_right(parse_predicate_expr(in, flags));
if (! node->right)
throw new parse_error("/ operator not followed by a valid term");
tok = next_token(in, flags);
}
push_token(tok);
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_unary_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node;
token_t& tok = next_token(in, flags);
switch (tok.kind) {
case token_t::EXCLAM: {
std::auto_ptr<op_t> expr(parse_path_expr(in, flags));
if (! expr.get())
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
// A very quick optimization
if (expr->kind == op_t::VALUE) {
*expr->valuep = ! *expr->valuep;
node.reset(expr.release());
} else {
node.reset(new op_t(op_t::O_NOT));
node->set_left(expr.release());
}
break;
}
case token_t::MINUS: {
std::auto_ptr<op_t> expr(parse_path_expr(in, flags));
if (! expr.get())
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
// A very quick optimization
if (expr->kind == op_t::VALUE) {
expr->valuep->negate();
node.reset(expr.release());
} else {
node.reset(new op_t(op_t::O_NEG));
node->set_left(expr.release());
}
break;
}
#if 0
case token_t::PERCENT: {
std::auto_ptr<op_t> expr(parse_path_expr(in, flags));
if (! expr.get())
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
// A very quick optimization
if (expr->kind == op_t::VALUE) {
static value_t perc("100.0%");
*expr->valuep = perc * *expr->valuep;
node.reset(expr.release());
} else {
node.reset(new op_t(op_t::O_PERC));
node->set_left(expr.release());
}
break;
}
#endif
default:
push_token(tok);
node.reset(parse_path_expr(in, flags));
break;
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_union_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_unary_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::PIPE || tok.kind == token_t::KW_UNION) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_UNION));
node->set_left(prev.release());
node->set_right(parse_union_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
} else {
push_token(tok);
}
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_mul_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_union_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::STAR || tok.kind == token_t::KW_DIV) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(tok.kind == token_t::STAR ?
op_t::O_MUL : op_t::O_DIV));
node->set_left(prev.release());
node->set_right(parse_mul_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
tok = next_token(in, flags);
}
push_token(tok);
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_add_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_mul_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::PLUS ||
tok.kind == token_t::MINUS) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(tok.kind == token_t::PLUS ?
op_t::O_ADD : op_t::O_SUB));
node->set_left(prev.release());
node->set_right(parse_add_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
tok = next_token(in, flags);
}
push_token(tok);
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_logic_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_add_expr(in, flags));
if (node.get()) {
op_t::kind_t kind = op_t::LAST;
unsigned short _flags = flags;
token_t& tok = next_token(in, flags);
switch (tok.kind) {
case token_t::ASSIGN:
kind = op_t::O_DEFINE;
break;
case token_t::EQUAL:
kind = op_t::O_EQ;
break;
case token_t::NEQUAL:
kind = op_t::O_NEQ;
break;
#if 0
case token_t::MATCH:
kind = op_t::O_MATCH;
_flags |= XPATH_PARSE_REGEXP;
break;
case token_t::NMATCH:
kind = op_t::O_NMATCH;
_flags |= XPATH_PARSE_REGEXP;
break;
#endif
case token_t::LESS:
kind = op_t::O_LT;
break;
case token_t::LESSEQ:
kind = op_t::O_LTE;
break;
case token_t::GREATER:
kind = op_t::O_GT;
break;
case token_t::GREATEREQ:
kind = op_t::O_GTE;
break;
default:
push_token(tok);
break;
}
if (kind != op_t::LAST) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(kind));
node->set_left(prev.release());
if (kind == op_t::O_DEFINE)
node->set_right(parse_querycolon_expr(in, flags));
else
node->set_right(parse_add_expr(in, _flags));
if (! node->right) {
if (tok.kind == token_t::PLUS)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
else
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
}
}
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_and_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_logic_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::KW_AND) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_AND));
node->set_left(prev.release());
node->set_right(parse_and_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
} else {
push_token(tok);
}
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_or_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_and_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::KW_OR) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_OR));
node->set_left(prev.release());
node->set_right(parse_or_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
} else {
push_token(tok);
}
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_querycolon_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_or_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::QUESTION) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_QUES));
node->set_left(prev.release());
node->set_right(new op_t(op_t::O_COLON));
node->right->set_left(parse_querycolon_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
tok = next_token(in, flags);
if (tok.kind != token_t::COLON)
tok.unexpected(); // jww (2006-09-09): wanted :
node->right->set_right(parse_querycolon_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
} else {
push_token(tok);
}
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_value_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_querycolon_expr(in, flags));
if (node.get()) {
token_t& tok = next_token(in, flags);
if (tok.kind == token_t::COMMA) {
std::auto_ptr<op_t> prev(node.release());
node.reset(new op_t(op_t::O_COMMA));
node->set_left(prev.release());
node->set_right(parse_value_expr(in, flags));
if (! node->right)
throw new parse_error(std::string(tok.symbol) +
" operator not followed by argument");
tok = next_token(in, flags);
}
if (tok.kind != token_t::TOK_EOF) {
if (flags & XPATH_PARSE_PARTIAL)
push_token(tok);
else
tok.unexpected();
}
}
else if (! (flags & XPATH_PARSE_PARTIAL)) {
throw new parse_error(std::string("Failed to parse value expression"));
}
return node.release();
}
xpath_t::op_t *
xpath_t::parse_expr(std::istream& in, unsigned short flags) const
{
std::auto_ptr<op_t> node(parse_value_expr(in, flags));
if (use_lookahead) {
use_lookahead = false;
lookahead.rewind(in);
}
lookahead.clear();
return node.release();
}
xpath_t::op_t *
xpath_t::op_t::new_node(kind_t kind, op_t * left, op_t * right)
{
std::auto_ptr<op_t> node(new op_t(kind));
if (left)
node->set_left(left);
if (right)
node->set_right(right);
return node.release();
}
xpath_t::op_t *
xpath_t::op_t::copy(op_t * left, op_t * right) const
{
std::auto_ptr<op_t> node(new op_t(kind));
if (left)
node->set_left(left);
if (right)
node->set_right(right);
return node.release();
}
void xpath_t::op_t::find_values(value_t * context, scope_t * scope,
value_t::sequence_t& result_seq,
bool recursive)
{
xpath_t expr(compile(context, scope, true));
if (expr->kind == VALUE)
append_value(*expr->valuep, result_seq);
if (recursive) {
if (context->type == value_t::XML_NODE) {
node_t * ptr = context->to_xml_node();
if (ptr->flags & XML_NODE_IS_PARENT) {
parent_node_t * parent = static_cast<parent_node_t *>(ptr);
for (node_t * node = parent->children();
node;
node = node->next) {
value_t temp(node);
find_values(&temp, scope, result_seq, recursive);
}
}
} else {
throw new calc_error("Recursive path selection on a non-node value");
}
}
}
bool xpath_t::op_t::test_value(value_t * context, scope_t * scope,
int index)
{
xpath_t expr(compile(context, scope, true));
if (expr->kind != VALUE)
throw new calc_error("Predicate expression does not yield a constant value");
switch (expr->valuep->type) {
case value_t::INTEGER:
case value_t::AMOUNT:
return *expr->valuep == (long)index + 1;
default:
return expr->valuep->to_boolean();
}
}
xpath_t::op_t * xpath_t::op_t::defer_sequence(value_t::sequence_t& result_seq)
{
// If not all of the elements were constants, transform the result
// into an expression sequence using O_COMMA.
assert(! result_seq.empty());
if (result_seq.size() == 1)
return wrap_value(result_seq.front())->acquire();
value_t::sequence_t::iterator i = result_seq.begin();
std::auto_ptr<op_t> lit_seq(new op_t(O_COMMA));
lit_seq->set_left(wrap_value(*i++));
op_t ** opp = &lit_seq->right;
for (; i != result_seq.end(); i++) {
if (*opp) {
op_t * val = *opp;
*opp = new op_t(O_COMMA);
(*opp)->set_left(val);
opp = &(*opp)->right;
}
if ((*i).type != value_t::POINTER)
*opp = wrap_value(*i)->acquire();
else
*opp = static_cast<op_t *>((*i).to_pointer());
}
return lit_seq.release();
}
void xpath_t::op_t::append_value(value_t& value,
value_t::sequence_t& result_seq)
{
if (value.type == value_t::SEQUENCE) {
value_t::sequence_t * subseq = value.to_sequence();
for (value_t::sequence_t::iterator i = subseq->begin();
i != subseq->end();
i++)
result_seq.push_back(*i);
} else {
result_seq.push_back(value);
}
}
xpath_t::op_t * xpath_t::op_t::compile(value_t * context, scope_t * scope,
bool resolve)
{
try {
switch (kind) {
case VALUE:
return acquire();
case NODE_ID:
switch (name_id) {
case document_t::CURRENT:
return wrap_value(context)->acquire();
case document_t::PARENT:
if (context->type != value_t::XML_NODE)
throw new compile_error("Referencing parent node from a non-node value");
else if (context->to_xml_node()->parent)
return wrap_value(context->to_xml_node()->parent)->acquire();
else
throw new compile_error("Referencing parent node from the root node");
case document_t::ROOT:
if (context->type != value_t::XML_NODE)
throw new compile_error("Referencing root node from a non-node value");
else
return wrap_value(context->to_xml_node()->document->top)->acquire();
case document_t::ALL: {
if (context->type != value_t::XML_NODE)
throw new compile_error("Referencing child nodes from a non-node value");
node_t * ptr = context->to_xml_node();
if (! (ptr->flags & XML_NODE_IS_PARENT))
throw new compile_error("Request for child nodes of a leaf node");
parent_node_t * parent = static_cast<parent_node_t *>(ptr);
value_t::sequence_t * nodes = new value_t::sequence_t;
for (node_t * node = parent->children(); node; node = node->next)
nodes->push_back(node);
return wrap_value(nodes)->acquire();
}
default:
break; // pass down to the NODE_NAME case
}
// fall through...
case NODE_NAME:
if (context->type == value_t::XML_NODE) {
node_t * ptr = context->to_xml_node();
if (resolve) {
// First, look up the symbol as a node name within the current
// context. If any exist, then return the set of names.
value_t::sequence_t * nodes = new value_t::sequence_t;
if (ptr->flags & XML_NODE_IS_PARENT) {
parent_node_t * parent = static_cast<parent_node_t *>(ptr);
for (node_t * node = parent->children();
node;
node = node->next) {
if ((kind == NODE_NAME &&
std::strcmp(name->c_str(), node->name()) == 0) ||
(kind == NODE_ID && name_id == node->name_id))
nodes->push_back(node);
}
}
return wrap_value(nodes)->acquire();
} else {
assert(ptr);
int id = ptr->document->lookup_name_id(*name);
if (id != -1) {
op_t * node = new_node(NODE_ID);
node->name_id = id;
return node->acquire();
}
}
}
return acquire();
case ATTR_NAME: {
// jww (2006-09-29): Attrs should map strings to values, not strings
const char * value = context->to_xml_node()->get_attr(name->c_str());
return wrap_value(value)->acquire();
}
case VAR_NAME:
case FUNC_NAME:
if (scope) {
if (resolve) {
value_t temp;
if (scope->resolve(*name, temp))
return wrap_value(temp)->acquire();
}
if (op_t * def = scope->lookup(*name))
return def->compile(context, scope, resolve);
}
return acquire();
case ARG_INDEX:
if (scope && scope->kind == scope_t::ARGUMENT) {
assert(scope->args.type == value_t::SEQUENCE);
if (arg_index < scope->args.to_sequence()->size())
return wrap_value((*scope->args.to_sequence())[arg_index])->acquire();
else
throw new compile_error("Reference to non-existing argument");
} else {
return acquire();
}
case FUNCTOR:
if (resolve) {
value_t temp;
(*functor)(temp, scope);
return wrap_value(temp)->acquire();
} else {
return acquire();
}
break;
#if 0
case MASK:
return acquire();
#endif
case O_NOT: {
assert(left);
xpath_t expr(left->compile(context, scope, resolve));
if (! expr->constant()) {
if (left == expr)
return acquire();
else
return copy(expr)->acquire();
}
if (left == expr) {
if (expr->valuep->strip_annotations())
return wrap_value(false)->acquire();
else
return wrap_value(true)->acquire();
} else {
if (expr->valuep->strip_annotations())
*expr->valuep = false;
else
*expr->valuep = true;
return expr->acquire();
}
}
case O_NEG: {
assert(left);
xpath_t expr(left->compile(context, scope, resolve));
if (! expr->constant()) {
if (left == expr)
return acquire();
else
return copy(expr)->acquire();
}
if (left == expr) {
return wrap_value(expr->valuep->negated())->acquire();
} else {
expr->valuep->negate();
return expr->acquire();
}
}
case O_UNION: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
xpath_t rexpr(right->compile(context, scope, resolve));
if (! lexpr->constant() || ! rexpr->constant()) {
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
std::auto_ptr<value_t::sequence_t> result_seq(new value_t::sequence_t);
append_value(*lexpr->valuep, *result_seq);
append_value(*rexpr->valuep, *result_seq);
if (result_seq->size() == 1)
return wrap_value(result_seq->front())->acquire();
else
return wrap_sequence(result_seq.release())->acquire();
break;
}
case O_ADD:
case O_SUB:
case O_MUL:
case O_DIV: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
xpath_t rexpr(right->compile(context, scope, resolve));
if (! lexpr->constant() || ! rexpr->constant()) {
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (left == lexpr) {
value_t temp(*lexpr->valuep);
switch (kind) {
case O_ADD: temp += *rexpr->valuep; break;
case O_SUB: temp -= *rexpr->valuep; break;
case O_MUL: temp *= *rexpr->valuep; break;
case O_DIV: temp /= *rexpr->valuep; break;
default: assert(0); break;
}
return wrap_value(temp)->acquire();
} else {
switch (kind) {
case O_ADD: *lexpr->valuep += *rexpr->valuep; break;
case O_SUB: *lexpr->valuep -= *rexpr->valuep; break;
case O_MUL: *lexpr->valuep *= *rexpr->valuep; break;
case O_DIV: *lexpr->valuep /= *rexpr->valuep; break;
default: assert(0); break;
}
return lexpr->acquire();
}
}
case O_NEQ:
case O_EQ:
case O_LT:
case O_LTE:
case O_GT:
case O_GTE: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
xpath_t rexpr(right->compile(context, scope, resolve));
if (! lexpr->constant() || ! rexpr->constant()) {
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (left == lexpr) {
switch (kind) {
case O_NEQ:
return wrap_value(*lexpr->valuep != *rexpr->valuep)->acquire();
break;
case O_EQ:
return wrap_value(*lexpr->valuep == *rexpr->valuep)->acquire();
break;
case O_LT:
return wrap_value(*lexpr->valuep < *rexpr->valuep)->acquire();
break;
case O_LTE:
return wrap_value(*lexpr->valuep <= *rexpr->valuep)->acquire();
break;
case O_GT:
return wrap_value(*lexpr->valuep > *rexpr->valuep)->acquire();
break;
case O_GTE:
return wrap_value(*lexpr->valuep >= *rexpr->valuep)->acquire();
break;
default: assert(0); break;
}
} else {
switch (kind) {
case O_NEQ: *lexpr->valuep = *lexpr->valuep != *rexpr->valuep; break;
case O_EQ: *lexpr->valuep = *lexpr->valuep == *rexpr->valuep; break;
case O_LT: *lexpr->valuep = *lexpr->valuep < *rexpr->valuep; break;
case O_LTE: *lexpr->valuep = *lexpr->valuep <= *rexpr->valuep; break;
case O_GT: *lexpr->valuep = *lexpr->valuep > *rexpr->valuep; break;
case O_GTE: *lexpr->valuep = *lexpr->valuep >= *rexpr->valuep; break;
default: assert(0); break;
}
return lexpr->acquire();
}
}
case O_AND: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
if (lexpr->constant() && ! lexpr->valuep->strip_annotations()) {
*lexpr->valuep = false;
return lexpr->acquire();
}
xpath_t rexpr(right->compile(context, scope, resolve));
if (! lexpr->constant() || ! rexpr->constant()) {
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (! rexpr->valuep->strip_annotations()) {
if (left == lexpr) {
return wrap_value(false)->acquire();
} else {
*lexpr->valuep = false;
return lexpr->acquire();
}
} else {
return rexpr->acquire();
}
}
case O_OR: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
if (lexpr->constant() && lexpr->valuep->strip_annotations())
return lexpr->acquire();
xpath_t rexpr(right->compile(context, scope, resolve));
if (! lexpr->constant() || ! rexpr->constant()) {
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (rexpr->valuep->strip_annotations()) {
return rexpr->acquire();
} else {
if (left == lexpr) {
return wrap_value(false)->acquire();
} else {
*lexpr->valuep = false;
return lexpr->acquire();
}
}
}
case O_QUES: {
assert(left);
assert(right);
assert(right->kind == O_COLON);
xpath_t lexpr(left->compile(context, scope, resolve));
if (! lexpr->constant()) {
xpath_t rexpr(right->compile(context, scope, resolve));
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (lexpr->valuep->strip_annotations())
return right->left->compile(context, scope, resolve);
else
return right->right->compile(context, scope, resolve);
}
case O_COLON: {
xpath_t lexpr(left->compile(context, scope, resolve));
xpath_t rexpr(right->compile(context, scope, resolve));
if (left == lexpr && right == rexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
case O_COMMA: {
assert(left);
assert(right);
// jww (2006-09-29): This should act just like union
xpath_t lexpr(left->compile(context, scope, resolve)); // for side-effects
return right->compile(context, scope, resolve);
}
#if 0
case O_MATCH:
case O_NMATCH: {
assert(left);
assert(right);
xpath_t rexpr(right->compile(context, scope, resolve));
xpath_t lexpr(left->compile(context, scope, resolve));
if (! lexpr->constant() || rexpr->kind != MASK) {
if (left == lexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
if (lexpr->valuep->type != value_t::STRING)
throw new compile_error("Left operand of mask operator is not a string");
assert(rexpr->mask);
bool result = rexpr->mask->match(lexpr->valuep->to_string());
if (kind == O_NMATCH)
result = ! result;
if (left == lexpr) {
return wrap_value(result)->acquire();
} else {
*lexpr->valuep = result;
return lexpr->acquire();
}
}
#endif
case O_DEFINE:
assert(left);
assert(right);
if (left->kind == VAR_NAME || left->kind == FUNC_NAME) {
xpath_t rexpr(right->compile(context, scope, resolve));
if (scope)
scope->define(*left->name, rexpr);
return rexpr->acquire();
} else {
assert(left->kind == O_EVAL);
assert(left->left->kind == FUNC_NAME);
std::auto_ptr<scope_t> arg_scope(new scope_t(scope));
int index = 0;
op_t * args = left->right;
while (args) {
op_t * arg = args;
if (args->kind == O_COMMA) {
arg = args->left;
args = args->right;
} else {
args = NULL;
}
// Define the parameter so that on lookup the parser will find
// an ARG_INDEX value.
std::auto_ptr<op_t> ref(new op_t(ARG_INDEX));
ref->arg_index = index++;
assert(arg->kind == NODE_NAME);
arg_scope->define(*arg->name, ref.release());
}
// jww (2006-09-16): If I compile the definition of a function,
// I eliminate the possibility of future lookups
//xpath_t rexpr(right->compile(arg_scope.get(), resolve));
if (scope)
scope->define(*left->left->name, right);
return right->acquire();
}
case O_EVAL: {
assert(left);
std::auto_ptr<scope_t> call_args(new scope_t(scope));
call_args->kind = scope_t::ARGUMENT;
std::auto_ptr<value_t::sequence_t> call_seq;
int index = 0;
op_t * args = right;
while (args) {
op_t * arg = args;
if (args->kind == O_COMMA) {
arg = args->left;
args = args->right;
} else {
args = NULL;
}
if (! call_seq.get())
call_seq.reset(new value_t::sequence_t);
// jww (2006-09-15): Need to return a reference to these, if
// there are undetermined arguments!
call_seq->push_back(arg->compile(context, scope, resolve)->value());
}
if (call_seq.get())
call_args->args = call_seq.release();
if (left->kind == FUNC_NAME) {
if (resolve) {
value_t temp;
if (scope && scope->resolve(*left->name, temp, call_args.get()))
return wrap_value(temp)->acquire();
}
// Don't compile to the left, otherwise the function name may
// get resolved before we have a chance to call it
xpath_t func(left->compile(context, scope, false));
if (func->kind == FUNCTOR) {
value_t temp;
(*func->functor)(temp, call_args.get());
return wrap_value(temp)->acquire();
}
else if (! resolve) {
return func->compile(context, call_args.get(), resolve);
}
else {
throw new calc_error(std::string("Unknown function name '") +
*left->name + "'");
}
}
else if (left->kind == FUNCTOR) {
value_t temp;
(*left->functor)(temp, call_args.get());
return wrap_value(temp)->acquire();
}
else {
assert(0);
}
break;
}
case O_FIND:
case O_RFIND:
case O_PRED: {
assert(left);
assert(right);
xpath_t lexpr(left->compile(context, scope, resolve));
xpath_t rexpr(resolve ? right->acquire() :
right->compile(context, scope, false));
if (! lexpr->constant() || ! resolve) {
if (left == lexpr)
return acquire();
else
return copy(lexpr, rexpr)->acquire();
}
std::auto_ptr<value_t::sequence_t> result_seq(new value_t::sequence_t);
// jww (2006-09-24): What about when nothing is found?
switch (lexpr->valuep->type) {
case value_t::XML_NODE: {
function_scope_t xpath_fscope(NULL, lexpr->valuep, 0, scope);
if (kind == O_PRED) {
if (rexpr->test_value(lexpr->valuep, &xpath_fscope))
result_seq->push_back(*lexpr->valuep);
} else {
rexpr->find_values(lexpr->valuep, &xpath_fscope, *result_seq.get(),
kind == O_RFIND);
}
break;
}
case value_t::SEQUENCE: {
value_t::sequence_t * seq = lexpr->valuep->to_sequence();
int index = 0;
for (value_t::sequence_t::iterator i = seq->begin();
i != seq->end();
i++, index++) {
assert((*i).type != value_t::SEQUENCE);
if ((*i).type != value_t::XML_NODE)
throw new compile_error("Attempting to apply path selection "
"to non-node(s)");
function_scope_t xpath_fscope(seq, &(*i), index, scope);
if (kind == O_PRED) {
if (rexpr->test_value(&(*i), &xpath_fscope, index))
result_seq->push_back(*i);
} else {
rexpr->find_values(&(*i), &xpath_fscope, *result_seq.get(),
kind == O_RFIND);
}
}
break;
}
default:
throw new compile_error("Attempting to apply path selection "
"to non-node(s)");
}
if (result_seq->size() == 1)
return wrap_value(result_seq->front())->acquire();
else
return wrap_sequence(result_seq.release())->acquire();
}
#if 0
case O_PERC: {
assert(left);
xpath_t expr(left->compile(context, scope, resolve));
if (! expr->constant()) {
if (left == expr)
return acquire();
else
return copy(expr)->acquire();
}
static value_t perc("100.0%");
*expr->valuep = perc * *expr->valuep;
return expr->acquire();
}
#endif
case LAST:
default:
assert(0);
break;
}
}
catch (error * err) {
#if 0
// jww (2006-09-09): I need a reference to the parent xpath_t
if (err->context.empty() ||
! dynamic_cast<context *>(err->context.back()))
err->context.push_back(new context(this));
#endif
throw err;
}
assert(0);
return NULL;
}
void xpath_t::calc(value_t& result, node_t * node, scope_t * scope) const
{
try {
if (node) {
value_t context_node(node);
xpath_t final(ptr->compile(&context_node, scope, true));
// jww (2006-09-09): Give a better error here if this is not
// actually a value
final->get_value(result);
} else {
std::auto_ptr<terminal_node_t> fake_node(new terminal_node_t(NULL));
value_t context_node(fake_node.get());
xpath_t final(ptr->compile(&context_node, scope, true));
final->get_value(result);
}
}
catch (error * err) {
if (err->context.empty() ||
! dynamic_cast<context *>(err->context.back()))
err->context.push_back
(new context(*this, ptr, "While calculating value expression:"));
#if 0
error_context * last = err->context.back();
if (context * ctxt = dynamic_cast<context *>(last)) {
ctxt->xpath = *this;
ctxt->desc = "While calculating value expression:";
}
#endif
throw err;
}
}
xpath_t::context::context(const xpath_t& _xpath,
const op_t * _err_node,
const std::string& desc) throw()
: xpath(_xpath), err_node(_err_node), error_context(desc)
{
_err_node->acquire();
}
xpath_t::context::~context() throw()
{
if (err_node) err_node->release();
}
void xpath_t::context::describe(std::ostream& out) const throw()
{
if (! xpath) {
out << "xpath_t::context expr not set!" << std::endl;
return;
}
if (! desc.empty())
out << desc << std::endl;
out << " ";
unsigned long start = (long)out.tellp() - 1;
unsigned long begin;
unsigned long end;
bool found = false;
if (xpath)
xpath.write(out, true, err_node, &begin, &end);
out << std::endl;
if (found) {
out << " ";
for (int i = 0; i < end - start; i++) {
if (i >= begin - start)
out << "^";
else
out << " ";
}
out << std::endl;
}
}
bool xpath_t::op_t::write(std::ostream& out,
const bool relaxed,
const op_t * op_to_find,
unsigned long * start_pos,
unsigned long * end_pos) const
{
int arg_index = 0;
bool found = false;
op_t * expr;
if (start_pos && this == op_to_find) {
*start_pos = (long)out.tellp() - 1;
found = true;
}
std::string symbol;
switch (kind) {
case VALUE:
switch (valuep->type) {
case value_t::BOOLEAN:
if (*(valuep))
out << "1";
else
out << "0";
break;
case value_t::INTEGER:
case value_t::AMOUNT:
if (! relaxed)
out << '{';
out << *(valuep);
if (! relaxed)
out << '}';
break;
case value_t::BALANCE:
case value_t::BALANCE_PAIR:
assert(0);
break;
case value_t::DATETIME:
out << '[' << *valuep << ']';
break;
case value_t::STRING:
out << '"' << *valuep << '"';
break;
}
break;
case NODE_ID:
#ifdef THREADSAFE
out << '%' << name_id;
#else
out << node_t::document->lookup_name(name_id);
#endif
break;
case NODE_NAME:
case FUNC_NAME:
out << *name;
break;
case ATTR_NAME:
out << '@' << *name;
break;
case VAR_NAME:
out << '$' << *name;
break;
case FUNCTOR:
out << functor->name();
break;
#if 0
case MASK:
out << '/' << mask->pattern << '/';
break;
#endif
case ARG_INDEX:
out << '@' << arg_index;
break;
case O_NOT:
out << "!";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_NEG:
out << "-";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_UNION:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " | ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_ADD:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " + ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_SUB:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " - ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_MUL:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " * ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_DIV:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " / ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_NEQ:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " != ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_EQ:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " == ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_LT:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " < ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_LTE:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " <= ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_GT:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " > ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_GTE:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " >= ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_AND:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " & ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_OR:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " | ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_QUES:
out << "(";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " ? ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_COLON:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " : ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_COMMA:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ", ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
#if 0
case O_MATCH:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " =~ ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_NMATCH:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << " !~ ";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
#endif
case O_DEFINE:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << '=';
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_EVAL:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << "(";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << ")";
break;
case O_FIND:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << "/";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_RFIND:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << "//";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
case O_PRED:
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << "[";
if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
out << "]";
break;
#if 0
case O_PERC:
out << "%";
if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos))
found = true;
break;
#endif
case LAST:
default:
assert(0);
break;
}
if (! symbol.empty()) {
if (commodity_t::find(symbol))
out << '@';
out << symbol;
}
if (end_pos && this == op_to_find)
*end_pos = (long)out.tellp() - 1;
return found;
}
void xpath_t::op_t::dump(std::ostream& out, const int depth) const
{
out.setf(std::ios::left);
out.width(10);
out << this << " ";
for (int i = 0; i < depth; i++)
out << " ";
switch (kind) {
case VALUE:
out << "VALUE - " << *valuep;
break;
case NODE_NAME:
out << "NODE_NAME - " << *name;
break;
case NODE_ID:
#ifdef THREADSAFE
out << "NODE_ID - " << name_id;
#else
out << "NODE_ID - " << node_t::document->lookup_name(name_id);
#endif
break;
case ATTR_NAME:
out << "ATTR_NAME - " << *name;
break;
case FUNC_NAME:
out << "FUNC_NAME - " << *name;
break;
case VAR_NAME:
out << "VAR_NAME - " << *name;
break;
case ARG_INDEX:
out << "ARG_INDEX - " << arg_index;
break;
case FUNCTOR:
out << "FUNCTOR - " << functor->name();
break;
#if 0
case MASK:
out << "MASK - " << mask->pattern;
break;
#endif
case O_NOT: out << "O_NOT"; break;
case O_NEG: out << "O_NEG"; break;
case O_UNION: out << "O_UNION"; break;
case O_ADD: out << "O_ADD"; break;
case O_SUB: out << "O_SUB"; break;
case O_MUL: out << "O_MUL"; break;
case O_DIV: out << "O_DIV"; break;
case O_NEQ: out << "O_NEQ"; break;
case O_EQ: out << "O_EQ"; break;
case O_LT: out << "O_LT"; break;
case O_LTE: out << "O_LTE"; break;
case O_GT: out << "O_GT"; break;
case O_GTE: out << "O_GTE"; break;
case O_AND: out << "O_AND"; break;
case O_OR: out << "O_OR"; break;
case O_QUES: out << "O_QUES"; break;
case O_COLON: out << "O_COLON"; break;
case O_COMMA: out << "O_COMMA"; break;
#if 0
case O_MATCH: out << "O_MATCH"; break;
case O_NMATCH: out << "O_NMATCH"; break;
#endif
case O_DEFINE: out << "O_DEFINE"; break;
case O_EVAL: out << "O_EVAL"; break;
case O_FIND: out << "O_FIND"; break;
case O_RFIND: out << "O_RFIND"; break;
case O_PRED: out << "O_PRED"; break;
#if 0
case O_PERC: out << "O_PERC"; break;
#endif
case LAST:
default:
assert(0);
break;
}
out << " (" << refc << ')' << std::endl;
if (kind > TERMINALS) {
if (left) {
left->dump(out, depth + 1);
if (right)
right->dump(out, depth + 1);
} else {
assert(! right);
}
} else {
assert(! left);
}
}
} // namespace xml
} // namespace ledger
#ifdef USE_BOOST_PYTHON
#include <boost/python.hpp>
using namespace boost::python;
using namespace ledger;
value_t py_calc_1(xpath_t::op_t& xpath_t, const details_t& item)
{
value_t result;
xpath_t.calc(result, item);
return result;
}
template <typename T>
value_t py_calc(xpath_t::op_t& xpath_t, const T& item)
{
value_t result;
xpath_t.calc(result, details_t(item));
return result;
}
xpath_t::op_t * py_parse_xpath_t_1(const std::string& str)
{
return parse_xpath_t(str);
}
#define EXC_TRANSLATOR(type) \
void exc_translate_ ## type(const type& err) { \
PyErr_SetString(PyExc_RuntimeError, err.what()); \
}
EXC_TRANSLATOR(xpath_t_error)
EXC_TRANSLATOR(calc_error)
#if 0
EXC_TRANSLATOR(mask_error)
#endif
void export_xpath()
{
class_< details_t > ("Details", init<const entry_t&>())
.def(init<const transaction_t&>())
.def(init<const account_t&>())
.add_property("entry",
make_getter(&details_t::entry,
return_value_policy<reference_existing_object>()))
.add_property("xact",
make_getter(&details_t::xact,
return_value_policy<reference_existing_object>()))
.add_property("account",
make_getter(&details_t::account,
return_value_policy<reference_existing_object>()))
;
class_< xpath_t::op_t > ("ValueExpr", init<xpath_t::op_t::kind_t>())
.def("calc", py_calc_1)
.def("calc", py_calc<account_t>)
.def("calc", py_calc<entry_t>)
.def("calc", py_calc<transaction_t>)
;
def("parse_xpath_t", py_parse_xpath_t_1,
return_value_policy<manage_new_object>());
class_< item_predicate<transaction_t> >
("TransactionPredicate", init<std::string>())
.def("__call__", &item_predicate<transaction_t>::operator())
;
class_< item_predicate<account_t> >
("AccountPredicate", init<std::string>())
.def("__call__", &item_predicate<account_t>::operator())
;
#define EXC_TRANSLATE(type) \
register_exception_translator<type>(&exc_translate_ ## type);
EXC_TRANSLATE(xpath_t_error);
EXC_TRANSLATE(calc_error);
#if 0
EXC_TRANSLATE(mask_error);
#endif
}
#endif // USE_BOOST_PYTHON
#ifdef TEST
#if ! defined(HAVE_EXPAT) && ! defined(HAVE_XMLPARSE)
#error No XML parser library was found during configure
#endif
#if 0
#include "session.h"
#include "format.h"
#endif
int main(int argc, char *argv[])
{
using namespace ledger;
using namespace ledger::xml;
try {
parser_t parser;
std::auto_ptr<document_t> doc;
std::ifstream input(argv[1]);
if (parser.test(input)) {
doc.reset(parser.parse(input));
doc->write(std::cout);
} else {
std::cerr << "Could not parse XML file: " << argv[1] << std::endl;
return 1;
}
xpath_t expr(argv[2]);
if (expr) {
std::cout << "Parsed:" << std::endl;
expr.dump(std::cout);
std::cout << std::endl;
expr.compile(doc.get());
std::cout << "Compiled:" << std::endl;
expr.dump(std::cout);
std::cout << std::endl;
value_t temp;
expr.calc(temp, doc->top);
std::cout << "Calculated value: " << temp << std::endl;
} else {
std::cerr << "Failed to parse value expression!" << std::endl;
}
#if 0
{
ledger::session_t session;
std::auto_ptr<xpath_t::scope_t>
locals(new xpath_t::scope_t(&session.globals));
ledger::format_t fmt(std::string("%20|%40{") + argv[1] + "}\n");
fmt.format(std::cout, locals.get());
}
#endif
}
catch (error * err) {
std::cout.flush();
if (err->context.empty())
err->context.push_front(new error_context(""));
err->reveal_context(std::cerr, "Error");
std::cerr << err->what() << std::endl;
delete err;
return 1;
}
catch (fatal * err) {
std::cout.flush();
if (err->context.empty())
err->context.push_front(new error_context(""));
err->reveal_context(std::cerr, "Fatal");
std::cerr << err->what() << std::endl;
delete err;
return 1;
}
catch (const std::exception& err) {
std::cout.flush();
std::cerr << "Error: " << err.what() << std::endl;
return 1;
}
}
#endif // TEST