Remove files which are no longer needed.

This commit is contained in:
jjgarcia 2001-07-23 09:01:05 +00:00
parent 35a9b11d37
commit d1156ed625
28 changed files with 0 additions and 8915 deletions

View file

@ -1,339 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

View file

@ -1,46 +0,0 @@
# file crs/Makefile
top_srcdir= @top_srcdir@
srcdir = @srcdir@
VPATH = @srcdir@
MACHINE = @MACHINE@
# Programs used by "make":
#
CC = @CC@
DEFS = -D$(MACHINE)
CFLAGS = -I../h -I$(top_srcdir)/h -I$(top_srcdir)/gmp @CFLAGS@ $(DEFS)
SHELL = /bin/sh
RM = @RM@
# Files
OBJS = dld.o @SETJMPO@ socket.o
HFILES = ../h/config.h $(srcdir)/objff.h
TARGETS = ../libcrs.a @RSYM@
all: $(TARGETS)
../libcrs.a: $(OBJS)
ar r $@ $(OBJS)
@RANLIB@ $@
dld.o: $(srcdir)/@DLD@.c $(HFILES)
$(CC) -c $(CFLAGS) $(srcdir)/@DLD@.c -o $@
socket.o: $(srcdir)/socket.c
$(CC) -c $(CFLAGS) $(srcdir)/socket.c -o $@
unexec.o: $(srcdir)/@UNEXEC@.c $(HFILES)
$(CC) -c $(CFLAGS) $(srcdir)/@UNEXEC@.c -o $@
setjmp.o: $(srcdir)/@SETJMP@
as $(srcdir)/@SETJMP@ -o $@
rsym rsym.exe: $(srcdir)/rsym.c $(top_srcdir)/h/machines.h
${CC} ${CFLAGS} $(srcdir)/rsym.c -o $@
clean:
$(RM) $(TARGETS) $(OBJS) core a.out

View file

@ -1,19 +0,0 @@
This directory contains the components of the Common Runtime Support:
1. memory management (files gbc.c alloc.c)
2. dumping an image (files unex*.c and unixsave.c)
3. dynamic loading (dld.c)
4. networking support (tcp.c)
These are built into a library (libcrs.a) which is searched when
building a Lisp application.
Implementations of unexec for various architectures is provided.
Some of them are those provided with GNU Emacs.
However we cannot use for instance unexsunos4, which expects a dynamic
linked executable, since this prevents subsequent loading of files
(procedures such as memcpy and _setjmp do not appear in the load map).
As a fall back we use unixsave.c, which works for all Suns, HP9000/300,
Vax, DOS/go32, Apollo, IBM/RT, Sequent.

File diff suppressed because it is too large Load diff

View file

@ -1,230 +0,0 @@
/* dldNeXT.c -- Dynamic loader for NeXT */
/*
Copyright (c) 1994, Giuseppe Attardi
This file is part of ECoLisp, an Embeddable Common Lisp.
ECoLisp is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
See file '../Copyright' for full details.
*/
#include "ecls.h"
#include <rld.h>
#include <fcntl.h>
#ifndef THREADS
static int code_size;
static char *code_start;
#endif
static unsigned long
alloc_code_block(unsigned long size, unsigned long headers_size) {
code_size = size;
code_start = (char *)alloc_contblock(size);
return (unsigned long)code_start;
}
static void
load_mach_o(char *filename)
{
FILE *fp;
struct mach_header header;
char *hdrbuf;
struct load_command *load_command;
struct segment_command *segment_command;
struct section *section;
int len, cmd, seg;
if ((fp = fopen(filename, "r")) == NULL)
FEerror("Can't read Mach-O object file", 0);
len = fread((char *)&header, sizeof(struct mach_header), 1, fp);
if (len == 1 && header.magic == MH_MAGIC) {
hdrbuf = (char *)malloc(header.sizeofcmds);
len = fread(hdrbuf, header.sizeofcmds, 1, fp);
if (len != 1)
FEerror("failure reading Mach-O load commands", 0);
load_command = (struct load_command *) hdrbuf;
for (cmd = 0; cmd < header.ncmds; ++cmd) {
if (load_command->cmd == LC_SEGMENT) {
segment_command = (struct segment_command *) load_command;
section = (struct section *) ((char *)(segment_command + 1));
for (seg = 0; seg < segment_command->nsects; ++seg, ++section) {
if (section->size != 0 && section->offset != 0) {
#ifdef DEBUG
fprintf(stderr, "section: %s, addr: 0x%08x, size: %d\n",
section->sectname, section->addr, section->size);
fflush(stderr);
#endif
fseek(fp, section->offset, 0);
fread((char *)section->addr, section->size, 1, fp);
}
}
}
load_command = (struct load_command *)
((char *)load_command + load_command->cmdsize);
}
free(hdrbuf);
}
(void)fclose(fp);
}
/*
*----------------------------------------------------------------------
*
* dld --
* dynamically load a file into memory.
*
* Results:
* none.
*
* Side effects:
* codeblock: containing address where the code has been loaded, and
* its size
*
*----------------------------------------------------------------------
*/
dld(char *faslfile, struct codeblock *Cblock)
{
struct mach_header *hdr;
char *files[2] = {faslfile, 0};
char tempfile[40];
rld_address_func(alloc_code_block);
sprintf(tempfile, "/tmp/fasltemp%d", getpid());
if (!rld_load(NULL, &hdr, files, tempfile))
FEerror(";;; rld_load() failed", 0);
load_mach_o(tempfile);
unlink(tempfile);
Cblock->cd_size = code_size;
Cblock->cd_start = code_start;
}
/*
*----------------------------------------------------------------------
*
* faslink --
* dynamically load a file into memory, linking it with additional
* libraries.
*
* Results:
* none.
*----------------------------------------------------------------------
*/
static char *library_search_path[] =
{"/lib", "/usr/lib", "/usr/local/lib", NULL};
#define strdup(string) strcpy((char *)malloc(strlen(string)+1),(string))
static char*
expand_library_filename(char *filename)
{
int fd;
char **dir;
char libname[256];
char fullname[256];
if (filename[0] == '-' && filename[1] == 'l') {
filename +=2;
strcpy(libname, "lib");
strcat(libname, filename);
strcat(libname, ".a");
for (dir = library_search_path; *dir; dir++) {
strcpy(fullname, *dir);
strcat(fullname, "/");
strcat(fullname, libname);
if ((fd = open(fullname, O_RDONLY, 0)) > 0) {
close(fd);
return (strdup(fullname));
}
}
return (strdup(libname));
}
return (strdup(filename));
}
static char**
make_ofile_list(char *faslfile, char *argstr)
{
char filename[256];
char *dst;
int i;
char **ofile_list;
ofile_list = (char **)calloc(1, sizeof(char *));
ofile_list[0] = strdup(faslfile);
i = 1;
if (argstr != NULL) {
for (;; i++) {
while ((*argstr == ' ') && (*argstr != '\0'))
argstr++;
if (*argstr == '\0')
break;
dst = filename;
while ((*argstr != ' ') && (*argstr != '\0'))
*dst++ = *argstr++;
*dst = '\0';
ofile_list = (char **)realloc((void *)ofile_list,
(i + 1) * sizeof(char *));
ofile_list[i] = expand_library_filename(filename);
}
}
ofile_list = (char **)realloc((void *)ofile_list, (i + 1) * sizeof(char *));
ofile_list[i] = NULL;
return (ofile_list);
}
static void
free_ofile_list(char **ofile_list)
{
int i;
for (i = 1;; i++) {
if (ofile_list[i] == NULL)
break;
(void)free(ofile_list[i]);
}
(void)free(ofile_list);
}
int
faslink(object faslfile, object ldargstring)
{
object temp_cfun, dataStream;
struct codeblock Cblock;
char *faslfilename;
char *ldargstr;
char **ofiles;
struct mach_header *hdr;
ldargstr = coerce_to_filename(ldargstring);
faslfilename = coerce_to_filename(faslfile);
printf(";;; Linking %s\n", faslfilename);
rld_address_func(alloc_code_block);
ofiles = make_ofile_list(faslfilename, ldargstr);
if (!rld_load(NULL, &hdr, ofiles, NULL)) {
free_ofile_list(ofiles);
FEerror(";;; rld_load() failed", 0);
}
free_ofile_list(ofiles);
/* preserve Cblock from GC */
temp_cfun = alloc_object(t_cfun);
temp_cfun->cf.cf_name = OBJNULL;
temp_cfun->cf.cf_block = &Cblock;
Cblock.cd_size = code_size;
Cblock.cd_start = code_start;
Cblock.cd_data = OBJNULL;
dataStream = (object)open_fasl_data(faslfile);
asm("trap #2"); /* clear cache */
(*(int (*)())(Cblock.cd_start))(Cblock.cd_size, dataStream);
close_stream(dataStream, TRUE);
return(0);
}

View file

@ -1,248 +0,0 @@
/*
Copyright (c) 1990, Giuseppe Attardi and William F. Schelter.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
See file '../Copyright' for full details.
*/
/* format of a rsyms output file:
struct lsymbol_table (gives number of symbols, and sum of length of strings)
addr, char[], addr, char[], ...
This can be read since the addr is sizeof(int) and the char[] is null
terminated, immediately followed by and addr...
There are tab.n_symbols pairs occurring.
*/
struct lsymbol_table {
unsigned int n_symbols;
unsigned int tot_leng;
};
#ifdef COFF
# ifdef MSDOS
# include <coff.h>
# else
# include <filehdr.h>
# include <aouthdr.h>
# include <scnhdr.h>
# include <syms.h>
# include <reloc.h>
# endif MSDOS
# ifndef FILHDR
# define FILHDR struct header
# endif FILHDR
# undef N_BADMAG /* checks AOUTHDR instead of FILHDR */
# ifdef __i386__
# define N_BADMAG(x) I386BADMAG(x)
# elif defined(hpux)
# define N_BADMAG(x) !(ISCOFF(x.a_magic))
# else
# define N_BADMAG(x) !(ISCOFF(x.f_magic))
# endif
# ifdef ECOFF
# undef N_TXTOFF
# endif
# define N_TXTOFF(p) section[0].s_scnptr
# define N_SYMOFF(x) (x).f_symptr
# define NSYMS(x) (x).f_nsyms
# ifdef apollo
# define EXT_and_TEXT_BSS_DAT(p) \
((1 <= (p)->n_scnum) && ((p)->n_scnum <= 5) && (p)->n_sclass == C_EXT)
# elif defined(ECOFF)
# define EXT_and_TEXT_BSS_DAT(p) 1
# else
# define EXT_and_TEXT_BSS_DAT(p) \
((1 <= (p)->n_scnum) && ((p)->n_scnum <= 3) && (p)->n_sclass == C_EXT)
# endif apollo
# ifdef ECOFF
# define SYMENT EXTR
# define SYMESZ sizeof(SYMENT)
# define SYM_VALUE(sym) (sym).asym.value
# define SYM_TYPE(psym) (psym)->asym.st
# define SYM_NAME(psym) &string_table[(psym)->asym.iss]
/*
We must distinguish the following kind of symbols:
External (ouside function bodies)
Defined (in this file)
Static (declared static)
Exported (non declared static)
Undefined
Unfortunately AS and GAS produce different symbol tables, so we find
a common denominator as follows:
External: stNil || stGlobal || stProc || stStaticProc
Undefined: stGblobal || (stProc && scUndefined)
Defined: !Undefined
Static: stNil || stStatic || stStaticProc
Exported: !Static
*/
# define C_STAT stNil: case stStatic: case stStaticProc
# define C_EXT stGlobal: case stProc
# define EXT_UNDEF(p) (SYM_TYPE(p) == stGlobal || \
(SYM_TYPE(p) == stProc && (p)->asym.sc == scUndefined))
# define EXT_EXPORTED(p) (SYM_TYPE(p) == stProc)
# define NUM_AUX(p) 0
# else /* !ECOFF */
# define SYM_VALUE(sym) (sym).n_value
# define SYM_TYPE(psym) (psym)->n_sclass
# define SYM_NAME(psym) \
(((psym)->n_zeroes == 0) ? \
&string_table[(psym)->n_offset] : \
((psym)->n_name[SYMNMLEN -1] ? \
(strncpy(tem, (psym)->n_name, SYMNMLEN), (char *)tem) : \
(psym)->n_name))
# define EXT_UNDEF(p) (((p)->n_scnum == 0) && (p)->n_sclass == C_EXT)
# define NUM_AUX(p) (p)->n_numaux
# endif ECOFF
# ifdef __GO32__
# define n_name e.e_name
# define n_numaux e_numaux
# define n_offset e.e.e_offset
# define n_sclass e_sclass
# define n_scnum e_scnum
# define n_type e_type
# define n_value e_value
# define n_zeroes e.e.e_zeroes
# define SYMNMLEN E_SYMNMLEN
# define R_ABS 0
# define R_RELBYTE 017
# define R_RELWORD 020
# define R_RELLONG 021
# define R_PCRBYTE 022
# define R_PCRWORD 023
# define R_PCRLONG 024
# define R_DIR32 06
# endif __GO32__
#endif COFF
/************************************************************************/
#ifdef ELF
# define ELF_TARGET_ALL
# include <elf.h>
# define FILHDR Elf32_Ehdr
# define PRGHDR Elf32_Phdr
# define SCNHDR Elf32_Shdr
# define SYMENT Elf32_Sym
#ifdef __NetBSD__
# define RELOC Elf32_RelA
#else
# define RELOC Elf32_Rela
#endif
# define N_BADMAG(h) (ELFMAG0 != h.e_ident[0])
# ifdef __mips
# define EXT_and_TEXT_BSS_DAT(p) ((ELF32_ST_BIND(p->st_info) == STB_GLOBAL) \
&& (p->st_shndx == text_index \
|| p->st_shndx == data_index\
|| p->st_shndx == bss_index \
|| p->st_shndx == 0xff00 \
|| p->st_shndx == STN_UNDEF))
# else
# define EXT_and_TEXT_BSS_DAT(p) ((ELF32_ST_BIND(p->st_info) == STB_GLOBAL \
|| ELF32_ST_BIND(p->st_info) == STB_WEAK) \
&& (p->st_shndx == text_index \
|| p->st_shndx == data_index\
|| p->st_shndx == bss_index \
|| p->st_shndx == SHN_UNDEF))
# endif
# define SYM_NAME(p) string_table+(p->st_name)
# define SYM_VALUE(p) (p).st_value
#endif ELF
/************************************************************************/
#ifdef AOUT
# include AOUT
# define FILHDR struct exec
# ifndef AIX
# define SYMENT struct nlist
# endif AIX
# ifdef hpux
# define nlist nlist_
typedef struct syment {
long n_value;
unsigned char n_type;
unsigned char n_length;
short n_almod;
short n_unused;
union { long n_strx;} n_un;
} SYMENT;
# endif hpux
# ifndef SYMENT
# define SYMENT struct syment
# endif SYMENT
# ifndef SYMESZ
# define SYMESZ (sizeof(SYMENT))
# endif SYMESZ
# define SYM_VALUE(sym) (sym).n_value
# ifndef SYMNMLEN
# define SYMNMLEN 0 /* no symbols are directly in the table */
# endif SYMNMLEN
# ifdef hpux
# define RELOC struct r_info
# elif defined(__sparc__)
# define RELOC struct reloc_info_sparc
# else
# define RELOC struct relocation_info
# endif hpux
# ifdef hpux
# define NSYMS(hdr) count_symbols(&hdr, fp)
# define N_SYMOFF(x) LESYM_OFFSET(x)
# define N_TRELOCOFF(x) RTEXT_OFFSET(x)
# else
# define NSYMS(f) ((unsigned int)((f).a_syms/(sizeof(struct nlist))))
# define N_TRELOCOFF(x) (N_TXTOFF(x) + (x).a_text + (x).a_data)
# endif hpux
# define EXT_UNDEF(p) ((p)->n_type == N_EXT)
# define EXT_and_TEXT_BSS_DAT(p) (((p)->n_type & N_EXT) && \
((p)->n_type & (N_TEXT | N_DATA | N_BSS)))
# define NUM_AUX(p) 0
# define SYM_TYPE(sym) ((sym)->n_type & N_TYPE)
# define N_SECTION(sym) (SYM_TYPE(sym) & ~N_EXT)
# define SYM_NAME(x) (string_table + (x)->n_un.n_strx)
# define C_EXT N_UNDF
# define RELSZ sizeof(RELOC)
# ifndef N_MAGIC
# define N_MAGIC(x) (x).a_magic
# endif
#endif AOUT

View file

@ -1,19 +0,0 @@
CC = gcc
unexe : unexe.c
$(CC) -static -o unexe -g unexe.c ../../libcrs.a
ecoffdump: ecoffdump.c
$(CC) -o ecoffdump ecoffdump.c
coffdump: coffdump.c
$(CC) -o coffdump coffdump.c -lld
test-dld: test-dld.c
$(CC) -o test-dld test-dld.c
dld: dld.c
$(CC) -o dld dld.c -lld
try: try.c
$(CC) -o try try.c -D${MACHINE}

View file

@ -1,58 +0,0 @@
/* Dump ECOFF-MIPS file */
#include <stdio.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <syms.h>
#include <reloc.h>
#include <storclass.h>
filecpy(FILE *to, FILE *from, register int n)
{
char buffer[BUFSIZ];
while (n > BUFSIZ) {
fread(buffer, BUFSIZ, 1, from);
fwrite(buffer, BUFSIZ, 1, to);
n -= BUFSIZ;
}
if (n > 0) {
fread(buffer, 1, n, from);
fwrite(buffer, 1, n, to);
}
}
main(int argc, char *argv[])
{
int i, n;
FILE *fp, *out;
FILHDR fileheader;
AOUTHDR unix_header;
char buf[512];
fp = fopen(argv[1], "r");
out = fopen(argv[2], "w");
fread((char *)&fileheader, sizeof(FILHDR), 1, fp);
fwrite((char *)&fileheader, sizeof(FILHDR), 1, out);
printf("ptr: %d\n", ftell(fp));
fread(&unix_header, sizeof(AOUTHDR), 1, fp);
fwrite(&unix_header, sizeof(AOUTHDR), 1, out);
printf("ptr: %d\n", ftell(fp));
/*
for (i = 0; i < fileheader.f_nscns; i++) {
fread(&section[i], sizeof(SCNHDR), 1, fp);
fwrite(&section[i], sizeof(SCNHDR), 1, out);
}
*/
printf("symptr: %d, ptr: %d\n", fileheader.f_symptr, ftell(fp));
filecpy(out, fp, fileheader.f_symptr - ftell(fp));
while ((n = read(_fileno(fp), buf, sizeof buf)) > 0) {
write(_fileno(out), buf, n);
printf("in: %d, out: %d\n", ftell(fp), ftell(out));
}
}

View file

@ -1,272 +0,0 @@
/* Dump COFF file */
#include <stdio.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <syms.h>
#include <reloc.h>
#include <ldfcn.h>
#ifdef __sgi
#define ECOFF
#endif
#ifdef ECOFF
#define SYMENT SYMR
#define SYM_VALUE(sym) (sym).value
#else
#define SYM_VALUE(sym) (sym).n_value
#endif
main(int argc, char *argv[])
{
int i, j;
char *s;
char *string_table;
LDFILE *ldptr;
struct aouthdr unix_header;
SCNHDR secthead1;
SCNHDR secthead2;
SCNHDR secthead3;
SCNHDR secthead4;
SCNHDR sectheadn;
SYMENT symbol;
struct reloc reloc;
printf("sizeof(struct reloc) = %d\n\n", sizeof(struct reloc));
printf("sizeof(SYMENT) = %d\n\n", sizeof(SYMENT));
ldptr = ldopen(argv[1], NULL);
printf("f_magic: %o\n", HEADER(ldptr).f_magic);
printf("f_nscns: %d\n", HEADER(ldptr).f_nscns);
printf("f_timdat: %d\n", HEADER(ldptr).f_timdat);
printf("f_symptr: %d\n", HEADER(ldptr).f_symptr);
printf("f_nsyms: %d\n", HEADER(ldptr).f_nsyms);
printf("f_opthdr: %d\n", HEADER(ldptr).f_opthdr);
printf("f_flags: %o\n", HEADER(ldptr).f_flags);
if(HEADER(ldptr).f_opthdr) {
FSEEK(ldptr, sizeof(struct filehdr), 0);
FREAD((char *)&unix_header, sizeof(struct aouthdr), 1, ldptr);
#ifdef apollo
printf("\nvformat: %o\n", unix_header.vformat);
#else
printf("\nmagic: %o\n", unix_header.magic);
#endif /* apollo */
printf("vstamp: %o\n", unix_header.vstamp);
printf("tsize: %d\n", unix_header.tsize);
printf("dsize: %d\n", unix_header.dsize);
printf("bsize: %d\n", unix_header.bsize);
printf("entry: %d\n", unix_header.entry);
printf("text_start: %d\n", unix_header.text_start);
printf("data_start: %d\n", unix_header.data_start);
#ifdef apollo
printf("o_sri: %d\n", unix_header.o_sri);
printf("o_inlib: %d\n", unix_header.o_inlib);
printf("vid[0]: %d, vid[1]: %d\n", unix_header.vid[0], unix_header.vid[1]);
#endif /* apollo */
}
ldshread(ldptr, 1, &secthead1);
printf("\nsecthead1:\n");
printf("s_name: %s\n", secthead1.s_name);
printf("s_paddr: %d\n", secthead1.s_paddr);
printf("s_vaddr: %d\n", secthead1.s_vaddr);
printf("s_size: %d\n", secthead1.s_size);
printf("s_scnptr: %d\n", secthead1.s_scnptr);
printf("s_relptr: %d\n", secthead1.s_relptr);
printf("s_lnnoptr: %d\n", secthead1.s_lnnoptr);
printf("s_nreloc: %d\n", secthead1.s_nreloc);
printf("s_nlnno: %d\n", secthead1.s_nlnno);
printf("s_flags: %o\n", secthead1.s_flags);
ldshread(ldptr, 2, &secthead2);
printf("\nsecthead2:\n");
printf("s_name: %s\n", secthead2.s_name);
printf("s_paddr: %d\n", secthead2.s_paddr);
printf("s_vaddr: %d\n", secthead2.s_vaddr);
printf("s_size: %d\n", secthead2.s_size);
printf("s_scnptr: %d\n", secthead2.s_scnptr);
printf("s_relptr: %d\n", secthead2.s_relptr);
printf("s_lnnoptr: %d\n", secthead2.s_lnnoptr);
printf("s_nreloc: %d\n", secthead2.s_nreloc);
printf("s_nlnno: %d\n", secthead2.s_nlnno);
printf("s_flags: %o\n", secthead2.s_flags);
ldshread(ldptr, 3, &secthead3);
printf("\nsecthead3:\n");
printf("s_name: %s\n", secthead3.s_name);
printf("s_paddr: %d\n", secthead3.s_paddr);
printf("s_vaddr: %d\n", secthead3.s_vaddr);
printf("s_size: %d\n", secthead3.s_size);
printf("s_scnptr: %d\n", secthead3.s_scnptr);
printf("s_relptr: %d\n", secthead3.s_relptr);
printf("s_lnnoptr: %d\n", secthead3.s_lnnoptr);
printf("s_nreloc: %d\n", secthead3.s_nreloc);
printf("s_nlnno: %d\n", secthead3.s_nlnno);
printf("s_flags: %o\n", secthead3.s_flags);
ldshread(ldptr, 4, &secthead4);
printf("\nsecthead4:\n");
printf("s_name: %s\n", secthead4.s_name);
printf("s_paddr: %d\n", secthead4.s_paddr);
printf("s_vaddr: %d\n", secthead4.s_vaddr);
printf("s_size: %d\n", secthead4.s_size);
printf("s_scnptr: %d\n", secthead4.s_scnptr);
printf("s_relptr: %d\n", secthead4.s_relptr);
printf("s_lnnoptr: %d\n", secthead4.s_lnnoptr);
printf("s_nreloc: %d\n", secthead4.s_nreloc);
printf("s_nlnno: %d\n", secthead4.s_nlnno);
printf("s_flags: %o\n", secthead4.s_flags);
#ifdef apollo
for (i = 5; i <= HEADER(ldptr).f_nscns; i++) {
ldshread(ldptr, i, &sectheadn);
printf("\nsectheadn:\n");
printf("s_name: %s\n", sectheadn.s_name);
printf("s_paddr: %d\n", sectheadn.s_paddr);
printf("s_vaddr: %d\n", sectheadn.s_vaddr);
printf("s_size: %d\n", sectheadn.s_size);
printf("s_scnptr: %d\n", sectheadn.s_scnptr);
printf("s_relptr: %d\n", sectheadn.s_relptr);
printf("s_lnnoptr: %d\n", sectheadn.s_lnnoptr);
printf("s_nreloc: %d\n", sectheadn.s_nreloc);
printf("s_nlnno: %d\n", sectheadn.s_nlnno);
printf("s_flags: %o\n", sectheadn.s_flags);
}
#endif /* apollo */
printf("\nreloc info for 1:\n");
ldrseek(ldptr, 1);
for (i = 0; i < secthead1.s_nreloc; i++) {
j = fread(&reloc, 10, 1, IOPTR(ldptr));
if (j != 1)
fprintf(stderr, "READ ERROR\n");
printf("\nr_vaddr %d\n", reloc.r_vaddr);
printf("r_symndx %d\n", reloc.r_symndx);
switch (reloc.r_type) {
case R_ABS:
printf("r_type R_ABS\n");
break;
case R_DIR32:
printf("r_type R_DIR32\n");
break;
case R_OFF16:
printf("r_type R_OFF16\n");
break;
case R_DIR32S:
printf("r_type R_DIR32S\n");
break;
case R_REL24:
printf("r_type R_REL24\n");
break;
case R_OPT16:
printf("r_type R_OPT16\n");
break;
case R_IND24:
printf("r_type R_IND24\n");
break;
case R_IND32:
printf("r_type R_IND32\n");
break;
default:
fprintf(stderr, "Illegal r_type: %o\n",
reloc.r_type);
break;
}
}
printf("\nreloc info for 2:\n");
ldrseek(ldptr, 2);
for (i = 0; i < secthead2.s_nreloc; i++) {
fread(&reloc, sizeof(struct reloc), 1, IOPTR(ldptr));
printf("\nr_vaddr %d\n", reloc.r_vaddr);
printf("r_symndx %d\n", reloc.r_symndx);
switch (reloc.r_type) {
case R_RELBYTE:
printf("r_type R_RELTYPE\n");
break;
case R_RELWORD:
printf("r_type R_RELWORD\n");
break;
case R_RELLONG:
printf("r_type R_RELLONG\n");
break;
case R_PCRBYTE:
printf("r_type R_PCRTYPE\n");
break;
case R_PCRWORD:
printf("r_type R_PCRWORD\n");
break;
case R_PCRLONG:
printf("r_type R_PCRLONG\n");
break;
default:
fprintf(stderr, "Illegal r_type: %d",
reloc.r_type);
break;
}
}
/*
If the string table is not empty,
its length is stored after the symbol table,
This is not described in the manual, and may change in the future.
*/
FSEEK(ldptr, STROFFSET(ldptr), 0);
if (FREAD((char *)&i, 4, 1, ldptr) > 0) {
printf("i: %d\n", i);
string_table = (char *)malloc(i);
FREAD(string_table, 1, i - 4, ldptr);
}
printf("\nsymbols:\n");
for (i = 0; i < HEADER(ldptr).f_nsyms; i++) {
ldtbread(ldptr, i, &symbol);
printf("\nldgetname(%d): %s\n",
i, ldgetname(ldptr, &symbol));
#ifdef ECOFF
printf("[%d] v %x st %d sc %d index %x %s\n",
i, symbol.value, symbol.st, symbol.sc, symbol.index,
string_table[symbol.iss]);
#else
printf("n_value: %o\n", SYM_VALUE(symbol));
switch (symbol.n_scnum) {
case N_UNDEF:
printf("n_scnum: N_UNDEF\n");
break;
case N_ABS:
printf("n_scnum: N_ABS\n");
break;
case N_DEBUG:
printf("n_scnum: N_DEBUG\n");
break;
case N_TV:
printf("n_scnum: N_TV\n");
break;
case P_TV:
printf("n_scnum: P_TV\n");
break;
default:
printf("n_scnum: %d\n", symbol.n_scnum);
break;
}
printf("n_type: %d\n", symbol.n_type);
printf("n_sclass: %d\n", symbol.n_sclass);
printf("n_numaux: %d\n", symbol.n_numaux);
i += symbol.n_numaux;
#endif /* ECOFF */
}
}

View file

@ -1,270 +0,0 @@
/* Dump ECOFF-MIPS file */
#include <stdio.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <syms.h>
#include <reloc.h>
#include <storclass.h>
main(int argc, char *argv[])
{
int i, j;
char *s;
FILE *fp;
FILHDR fileheader;
AOUTHDR unix_header;
SCNHDR section[10];
HDRR symheader;
char *string_table;
EXTR symbol;
RELOC reloc;
printf("sizeof(RELOC) = %d\n\n", sizeof(RELOC));
printf("sizeof(EXTR) = %d\n\n", sizeof(EXTR));
/* On MIPS the file headers are present also in the memory
at address 0x400000 (start of text) */
fp = fopen(argv[1], "r");
fread((char *)&fileheader, sizeof(FILHDR), 1, fp);
printf("f_magic: 0x%x\n", fileheader.f_magic);
printf("f_nscns: %d\n", fileheader.f_nscns);
printf("f_timdat: %d\n", fileheader.f_timdat);
printf("f_symptr: %d\n", fileheader.f_symptr);
printf("f_nsyms: %d\n", fileheader.f_nsyms);
printf("f_opthdr: %d\n", fileheader.f_opthdr);
printf("f_flags: 0x%x\n", fileheader.f_flags);
if (fileheader.f_opthdr) {
fread(&unix_header, sizeof(AOUTHDR), 1, fp);
printf("\nmagic: 0%o\n", unix_header.magic);
printf("vstamp: 0%o\n", unix_header.vstamp);
printf("tsize: %d\n", unix_header.tsize);
printf("dsize: %d\n", unix_header.dsize);
printf("bsize: %d\n", unix_header.bsize);
printf("entry: %d\n", unix_header.entry);
printf("text_start: %d\n", unix_header.text_start);
printf("data_start: %d\n", unix_header.data_start);
#if __mips
printf("bss_start: %d\n", unix_header.bss_start);
#endif
}
for (i = 0; i < fileheader.f_nscns; i++) {
fread(&section[i], sizeof(SCNHDR), 1, fp);
printf("\nsection[%d]:\n", i);
printf("s_name: %s\n", section[i].s_name);
printf("s_paddr:\t%d\n", section[i].s_paddr);
printf("s_vaddr:\t%d\n", section[i].s_vaddr);
printf("s_size:\t\t%d\n", section[i].s_size);
printf("s_scnptr:\t%d\n", section[i].s_scnptr);
printf("s_relptr:\t%d\n", section[i].s_relptr);
printf("s_lnnoptr:\t%d\n", section[i].s_lnnoptr);
printf("s_nreloc:\t%d\n", section[i].s_nreloc);
printf("s_nlnno:\t%d\n", section[i].s_nlnno);
printf("s_flags:\t0%o\n", section[i].s_flags);
}
/* Print reloc information */
for (j = 0; j < fileheader.f_nscns; j++) {
if (section[j].s_nreloc == 0) continue;
fseek(fp, section[j].s_relptr, 0);
printf("\nreloc info for %s:\n", section[j].s_name);
printf("\tr_vaddr r_symndx r_type\n\n");
for (i = 0; i < section[j].s_nreloc; i++) {
if (fread(&reloc, sizeof(reloc), 1, fp) != 1)
fprintf(stderr, "READ ERROR\n");
printf("%15x %8d ", reloc.r_vaddr, reloc.r_symndx);
switch (reloc.r_type) {
case R_ABS:
printf("R_ABS\n");
break;
#ifdef __mips
case R_REFHALF:
printf("R_REFHALF\n");
break;
case R_REFWORD:
printf("R_REFWORD\n");
break;
case R_JMPADDR: /* 26-bit jump reference */
printf("R_JMPADDR\n");
break;
case R_REFHI:
printf("R_REFHI\n");
break;
case R_REFLO:
printf("R_REFLO\n");
break;
case R_GPREL:
printf("R_GPREL\n");
break;
case R_LITERAL:
printf("R_LITERAL\n");
break;
case R_REL32:
printf("R_REL32\n");
break;
case R_REFHI_64:
printf("R_REFHI_64\n");
break;
case R_REFLO_64:
printf("R_REFLO_64\n");
break;
case R_REFWORD_64:
printf("R_REFWORD_64\n");
break;
case R_PC16:
printf("R_PC16\n");
break;
#ifdef __osf__
case R_RELHI:
printf("R_RELHI\n");
break;
case R_RELLO:
printf("R_RELLO\n");
break;
#endif /* __osf__ */
case R_REFSHFT:
printf("R_REFSHFT\n");
break;
case R_REFHI_ADDEND:
printf("R_REFHI_ADDEND\n");
break;
#else
case R_DIR16:
printf("R_DIR16\n");
break;
case R_REL16:
printf("R_REL16\n");
break;
case R_IND16:
printf("R_IND16\n");
break;
case R_DIR24:
printf("R_DIR24\n");
break;
case R_REL24:
printf("R_REL24\n");
break;
case R_DIR32:
printf("R_DIR32\n");
break;
case R_OFF8:
printf("R_OFF8\n");
break;
case R_OFF16:
printf("R_OFF16\n");
break;
case R_SEG12:
printf("R_SEG12\n");
break;
case R_DIR32S:
printf("R_DIR32S\n");
break;
case R_AUX:
printf("R_AUX\n");
break;
case R_OPT16:
printf("R_OPT16\n");
break;
case R_IND24:
printf("R_IND24\n");
break;
case R_IND32:
printf("R_IND32\n");
break;
case R_RELBYTE:
printf("R_RELBYTE\n");
break;
case R_RELWORD:
printf("R_RELWORD\n");
break;
case R_RELLONG:
printf("R_RELLONG\n");
break;
case R_PCRBYTE:
printf("R_PCRBYTE\n");
break;
case R_PCRWORD:
printf("R_PCRWORD\n");
break;
case R_PCRLONG:
printf("R_PCRLONG\n");
break;
#endif mips
default:
printf("%d\n", reloc.r_type);
}
}
}
fseek(fp, fileheader.f_symptr, 0);
fread(&symheader, sizeof(HDRR), 1, fp);
printf("\nSymbolic header, magic number = 0x%x, vstamp = %d:\n",
symheader.magic, symheader.vstamp);
printf("\tInfo\t\t\tOffset\tNumber\tBytes\n\n");
printf("\t%s\t\t%d\t%d\t%d\n", "Line numbers",
symheader.cbLineOffset, symheader.ilineMax, symheader.cbLine);
#define SIZE(x, y) ((y) ? (x)-(y) : 0)
printf("\t%s\t\t%d\t%d\t%d\n", "Dense numbers",
symheader.cbDnOffset, symheader.idnMax,
SIZE(symheader.cbPdOffset,symheader.cbDnOffset));
printf("\t%s\t%d\t%d\t%d\n", "Procedure Tables",
symheader.cbPdOffset, symheader.ipdMax,
SIZE(symheader.cbSymOffset,symheader.cbPdOffset));
printf("\t%s\t\t%d\t%d\t%d\n", "Local Symbols",
symheader.cbSymOffset, symheader.isymMax,
SIZE((symheader.cbOptOffset ?
symheader.cbOptOffset : symheader.cbAuxOffset),
symheader.cbSymOffset));
printf("\t%s\t%d\t%d\t%d\n", "Optimization Symbols",
symheader.cbOptOffset, symheader.ioptMax,
SIZE(symheader.cbAuxOffset,symheader.cbOptOffset));
printf("\t%s\t%d\t%d\t%d\n", "Auxiliary Symbols",
symheader.cbAuxOffset, symheader.iauxMax,
SIZE(symheader.cbSsOffset,symheader.cbAuxOffset));
printf("\t%s\t\t%d\t%d\t%d\n", "Local Strings",
symheader.cbSsOffset, symheader.issMax,
SIZE(symheader.cbExtOffset,symheader.cbSsOffset));
printf("\t%s\t%d\t%d\t%d\n", "External Strings",
symheader.cbSsExtOffset, symheader.issExtMax,
SIZE(symheader.cbFdOffset,symheader.cbSsExtOffset));
printf("\t%s\t\t%d\t%d\t%d\n", "File Tables",
symheader.cbFdOffset, symheader.ifdMax,
SIZE(symheader.cbRfdOffset,symheader.cbFdOffset));
printf("\t%s\t\t%d\t%d\t%d\n", "Relative Files",
symheader.cbRfdOffset, symheader.crfd,
SIZE(symheader.cbExtOffset,symheader.cbRfdOffset));
printf("\t%s\t%d\t%d\t%d\n", "External Symbols",
symheader.cbExtOffset, symheader.iextMax,
sizeof(EXTR)*symheader.iextMax);
/* Read External Strings */
fseek(fp, symheader.cbSsExtOffset, 0);
i = symheader.cbFdOffset - symheader.cbSsExtOffset;
string_table = (char *)malloc(i);
fread(string_table, i, 1, fp);
printf("\nThere are %d external symbols, starting at %d\n\n",
symheader.iextMax, symheader.cbExtOffset);
fseek(fp, symheader.cbExtOffset, 0);
for (i = 0; i < symheader.iextMax; i++) {
SYMR sym;
fread(&symbol, sizeof(symbol), 1, fp);
sym = symbol.asym;
printf("[%3d]: value %8x st%4d sc%4d index%6x %s\n",
i, sym.value, sym.st, sym.sc, sym.index,
string_table + sym.iss);
}
}

View file

@ -1,9 +0,0 @@
#include <stdio.h>
int a[100];
main()
{
printf("Hello.\n");
printf("a[10] = %d\n", a[10]);
}

View file

@ -1,9 +0,0 @@
#include <stdio.h>
int a[100];
extra_lenght_foo()
{
printf("Hello.\n");
printf("a[10] = %d\n", a[10]);
}

View file

@ -1,39 +0,0 @@
.file "o.c"
.version "RR-0.07-Beta"
.LL0:
.data
.comm a,400
.text
.align 4
.globl extra_lenght_foo
extra_lenght_foo:
jmp .L28
.L27:
/ 7 printf("Hello.\n");
.text
pushl $.L30
call printf
addl $4,%esp
/ 8 printf("a[10] = %d\n", a[10]);
.text
pushl a+40
pushl $.L31
call printf
addl $8,%esp
/ 9 }
.L26:
leave
ret
.L28:
pushl %ebp
movl %esp,%ebp
jmp .L27
/FUNCEND
.data
.L30:
.byte 0x48,0x65,0x6c,0x6c,0x6f,0x2e,0x0a,0x00
.L31:
.byte 0x61,0x5b,0x31,0x30,0x5d,0x20,0x3d,0x20,0x25,0x64
.byte 0x0a,0x00

View file

@ -1,57 +0,0 @@
#include <stdio.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <reloc.h>
#include <syms.h>
int a[100];
main(argc, argv)
int argc;
char *argv[];
{
FILE *fp;
struct scnhdr section;
int tsize, dsize, bsize, text_start;
char *text, *malloc();
char command[128];
fp = fopen(argv[1], "r");
fseek(fp, sizeof(struct filehdr), 0);
fread(&section, sizeof(struct scnhdr), 1, fp);
tsize = section.s_size;
text_start = section.s_scnptr;
fread(&section, sizeof(struct scnhdr), 1, fp);
dsize = section.s_size;
fread(&section, sizeof(struct scnhdr), 1, fp);
bsize - section.s_size;
fclose(fp);
printf("size: %d+%d+%d = %d\n", tsize, dsize, bsize,
tsize + dsize + bsize);
text = malloc(tsize + dsize + bsize);
sprintf(command, "ild %s %d %s tmp", argv[0], (int)text, argv[1]);
printf("%s\n", command);
if (system(command) != 0) {
fprintf(stderr, "Can't relocate.\n");
exit(1);
}
fp = fopen("tmp", "r");
fseek(fp, text_start, 0);
fread(text, 1, tsize + dsize, fp);
fclose(fp);
a[10] = 123;
(*(int (*)())text)();
}
dummy()
{
printf("What?\n");
}

View file

@ -1,26 +0,0 @@
int initflag = 0;
#include <stdio.h>
char *data_end;
extern char *sbrk();
extern unexec();
char stdin_buf[BUFSIZ], stdout_buf[BUFSIZ];
main(argc, argv)
int argc; char ** argv;
{ char *data_start;
if (!initflag) {
initflag = 1;
printf("brk(0): %d\n", sbrk(0));
printf("data begin: %d\n", &initflag);
data_start = sbrk(2000);
brk(data_start + 500);
data_end = sbrk(0);
printf("data_start: %d, data_end: %d, sbrk: %d\n",
data_start, data_end, sbrk(0));
unexec("/tmp/foo", argv[0]);
} else {
printf ("end: %d, sbrk(0): %d, sbrk(0): %d\n", data_end, sbrk(0), sbrk(0));
}
}

View file

@ -1,269 +0,0 @@
/*
Copyright (c) 1990, Giuseppe Attardi and William F. Schelter.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
See file '../Copyright' for full details.
*/
/*
This program reads the external symbols from an object file and
writes them out to a file together with their addresses.
This information is used for dynamic linking of object files.
*/
#include <stdio.h>
#include <sys/file.h>
#include "machines.h"
#include "objff.h"
static FILHDR fileheader;
static SYMENT *symbol_table;
static char *string_table;
static char *start_address;
static int nsyms;
main(int argc, char *argv[])
{
if (argc != 3) {
perror("Usage: rsym file outfile");
fflush(stdout);
exit(1);
}
get_myself(argv[1]);
output_externals(argv[1], argv[2]);
exit(0);
}
#ifdef ELF
static int text_index, data_index, bss_index, sbss_index;
static SCNHDR *section_headers;
static char *section_names;
get_section_number(char *name)
{ int k;
for (k = 1; k < fileheader.e_shnum; k++)
if (strcmp(&section_names[section_headers[k].sh_name], name) == 0)
return k;
fprintf(stderr, "Missing section\n");
exit(1);
}
char *
read_section(FILE *fp, int shndx)
{
char *sec;
sec = (char *)malloc(section_headers[shndx].sh_size);
fseek(fp, section_headers[shndx].sh_offset, SEEK_SET);
fread(sec, section_headers[shndx].sh_size, 1, fp);
return sec;
}
#endif ELF
get_myself(char *filename)
{
unsigned int i, string_size;
FILE *fp;
fp = fopen(filename, OPEN_R);
if (fp == NULL) {
fprintf(stderr, "Can't open %s\n", filename);
exit(1);
}
fread((char *)&fileheader, sizeof(FILHDR), 1, fp);
if (N_BADMAG(fileheader)) {
#ifdef ELF
fprintf(stderr, "Bad ELF magic %s",filename);
#else
fprintf(stderr, "Bad magic %s",filename);
#endif
exit(1);
}
#ifdef ELF
{ int symbol_index, symsize;
/* Read section headers */
section_headers = (void *)malloc(sizeof(SCNHDR)*
(1 + fileheader.e_shnum));
fseek(fp, fileheader.e_shoff, SEEK_SET);
for (i = 0 ; i < fileheader.e_shnum ; i++)
fread(&section_headers[i], fileheader.e_shentsize, 1, fp);
/* Read the section names */
section_names = read_section(fp, fileheader.e_shstrndx);
/* Read the Symbol Table */
symbol_index = get_section_number(".symtab");
symsize = section_headers[symbol_index].sh_entsize;
nsyms = section_headers[symbol_index].sh_size/symsize;
symbol_table = (void *) malloc(sizeof(SYMENT) * nsyms);
if (fseek(fp, section_headers[symbol_index].sh_offset, SEEK_SET)) {
fprintf(stderr, "seek error");
exit(1);
}
for (i = 0; i < nsyms; i++)
fread((char *)&symbol_table[i], symsize, 1, fp);
/* Read the String Table */
string_table = read_section(fp, get_section_number(".strtab"));
text_index = get_section_number(".text");
bss_index = get_section_number(".bss");
data_index = get_section_number(".data");
}
#else /* !ELF */
if (fseek(fp, (int)(N_SYMOFF(fileheader)), 0)) {
fprintf(stderr, "seek error");
exit(1);
}
# if defined(ECOFF)
{ HDRR symheader;
fseek(fp, N_SYMOFF(fileheader), 0);
fread(&symheader, sizeof(HDRR), 1, fp);
/* Read External Strings */
fseek(fp, symheader.cbSsExtOffset, 0);
i = symheader.cbFdOffset - symheader.cbSsExtOffset;
string_table = (char *)malloc(i);
fread(string_table, i, 1, fp);
/* Read External Symbols */
nsyms = symheader.iextMax;
symbol_table = (SYMENT *)malloc(SYMESZ * nsyms);
fseek(fp, symheader.cbExtOffset, 0);
for (i = 0; i < nsyms; i++)
fread(&symbol_table[i], SYMESZ, 1, fp);
}
# else /* !ECOFF && !ELF */
nsyms = NSYMS(fileheader);
symbol_table = (SYMENT *)malloc(sizeof(SYMENT) * nsyms);
# ifndef hpux
/* Read Symbol Table */
for (i = 0; i < nsyms; i++)
/* sizeof(SYMENT) and SYMESZ are not always the same */
fread((char *)&symbol_table[i], SYMESZ, 1, fp);
/* Read the String Table */
# ifdef N_STROFF
fseek(fp, N_STROFF(fileheader), 0);
# endif N_STROFF
/* First word is size of table: */
if (fread((char *)&string_size, sizeof(int), 1, fp) > 0) {
string_table = (char *)malloc(string_size);
fseek(fp, -sizeof(int), 1);
if (string_size != fread(string_table, 1, string_size, fp)) {
perror("rsym could not read bad string table");
exit(1);
}
} else {
perror("Error: There is no string table \n");
exit(1);
}
# else /* hpux */
for (i = 0; i < nsyms; i++) {
fread((char *)&symbol_table[i], SYMESZ, 1, fp);
symbol_table[i].n_un.n_strx = string_size;
string_size += symbol_table[i].n_length + 1;
fseek(fp, symbol_table[i].n_length, 1);
}
/* Read the String Table */
{ char *p;
int slen;
p = string_table = malloc((unsigned int)string_size);
dprintf( string table leng = %d, string_size);
fseek(fp, (int)( LESYM_OFFSET(fileheader)), 0);
for (i = 0; i < nsyms; i++) {
fseek(fp, SYMESZ, 1);
slen = symbol_table[i].n_length;
fread(p, slen, 1, fp);
*((p)+slen) = '\0';
p += symbol_table[i].n_length + 1;
}
}
# endif hpux
# endif ECOFF
#endif ELF
fclose(fp);
}
output_externals(char *infile, char *outfile)
{ FILE *fp, *symout;
char *name;
struct lsymbol_table tab;
SYMENT *p, *end;
#ifdef SYMNMLEN
char tem[SYMNMLEN+1];
tem[SYMNMLEN] = 0;
#endif
tab.n_symbols = 0; tab.tot_leng = 0;
symout = fopen(outfile, OPEN_W);
if (!symout) { perror(outfile); exit(1);}
fseek(symout, sizeof(struct lsymbol_table), 0);
end = symbol_table + nsyms;
for (p = symbol_table; p < end; p++) {
/*
Is the following check enough?
*/
if (EXT_and_TEXT_BSS_DAT(p)) {
name = SYM_NAME(p);
tab.n_symbols++;
fwrite((char *)&SYM_VALUE(*p), sizeof(int), 1, symout);
while (tab.tot_leng++, *name)
putc(*name++, symout);
putc('\0', symout);
# ifdef NUM_AUX
p = p + NUM_AUX(p);
# endif
}
}
#ifdef apollo
{ struct scnhdr aptvhdr;
struct reloc entry;
int i, addr;
/* go to the relocation entries for section APTV */
fp = fopen(infile, OPEN_R);
fseek(fp, FILHSZ + sizeof(struct aouthdr) + 2 * SCNHSZ, 0);
fread(&aptvhdr, sizeof(struct scnhdr), 1, fp);
fseek(fp, aptvhdr.s_relptr, 0);
/* Each entry corresponds to an external library symbol.
Such relocation entry refers to an element of the APTV vector.
Elements in the APTV consist in 6 bytes (2 bytes of JMP instruction,
4 bytes of JMP address).
The relocation entry contains in r_vaddr the address of these 4 bytes.
Therefore the relocation address for the symbol is exactly the
address of the APTV element, e.g. the r_vaddr - 2.
*/
for (i = 0; i < aptvhdr.s_nreloc; i++) {
fread(&entry, sizeof(entry), 1 ,fp);
p = &symbol_table[entry.r_symndx];
name = SYM_NAME(p);
tab.n_symbols++;
addr = entry.r_vaddr - 2;
fwrite(&addr, sizeof(int), 1, symout);
while (tab.tot_leng++, *name)
putc(*name++, symout);
putc('\0', symout);
}
fclose(fp);
}
#endif apollo
fseek(symout, 0, 0);
fwrite(&tab, sizeof(tab), 1, symout);
fclose(symout);
}

View file

@ -1,35 +0,0 @@
.text
.align 4
.global __setjmp
.proc 04
__setjmp:
clr [ %o0 ]
st %sp, [ %o0 + 4 ]
add 8, %o7, %o1
st %o1, [ %o0 + 8 ]
st %fp, [ %o0 + 0xc ]
st %i7, [ %o0 + 0x10 ]
retl
mov %g0, %o0
.align 4
.global __longjmp
.proc 04
__longjmp: ta 3
ld [ %o0 + 4 ], %o2
ldd [ %o2 ], %l0
ldd [ %o2 + 8 ], %l2
ldd [ %o2 + 0x10 ], %l4
ldd [ %o2 + 0x18 ], %l6
ldd [ %o2 + 0x20 ], %i0
ldd [ %o2 + 0x28 ], %i2
ldd [ %o2 + 0x30 ], %i4
ld [ %o0 + 0xc ], %fp
mov %o2, %sp
ld [ %o0 + 0x10 ], %i7
ld [ %o0 + 8 ], %o3
tst %o1
bne L1
sub %o3, 8, %o7
mov 1, %o1
L1: retl
mov %o1, %o0

View file

@ -1,177 +0,0 @@
/* socket.c -- socket interface */
/*
Copyright (c) 1990, Giuseppe Attardi.
ECoLisp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Library Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
See file '../Copyright' for full details.
*/
#include <stdio.h>
#include <sys/types.h>
#include <errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/socket.h>
#include <string.h>
#include <sys/ioctl.h>
extern int errno;
/***********************************************************************
* Client side
**********************************************************************/
/*
* Attempts to connect to server, given host and port. Returns file
* descriptor (network socket) or 0 if connection fails.
*/
int connect_to_server(char *host, int port)
{
struct sockaddr_in inaddr; /* INET socket address. */
struct sockaddr *addr; /* address to connect to */
struct hostent *host_ptr;
int addrlen; /* length of address */
extern char *getenv();
extern struct hostent *gethostbyname();
int fd; /* Network socket */
/* Get the statistics on the specified host. */
if ((inaddr.sin_addr.s_addr = inet_addr(host)) == -1) {
if ((host_ptr = gethostbyname(host)) == NULL) {
/* No such host! */
errno = EINVAL;
return(0);
}
/* Check the address type for an internet host. */
if (host_ptr->h_addrtype != AF_INET) {
/* Not an Internet host! */
errno = EPROTOTYPE;
return(0);
}
/* Set up the socket data. */
inaddr.sin_family = host_ptr->h_addrtype;
memcpy((char *)&inaddr.sin_addr, (char *)host_ptr->h_addr,
sizeof(inaddr.sin_addr));
}
else
inaddr.sin_family = AF_INET;
addr = (struct sockaddr *) &inaddr;
addrlen = sizeof (struct sockaddr_in);
inaddr.sin_port = port;
inaddr.sin_port = htons(inaddr.sin_port);
/*
* Open the network connection.
*/
if ((fd = socket((int) addr->sa_family, SOCK_STREAM, 0)) < 0)
return(0); /* errno set by system call. */
#ifdef TCP_NODELAY
/* make sure to turn off TCP coalescence */
{ int mi;
setsockopt (fd, IPPROTO_TCP, TCP_NODELAY, &mi, sizeof (int));
}
#endif
#ifdef THREADS
start_critical_section();
#endif
if (connect(fd, addr, addrlen) == -1) {
(void) close (fd);
#ifdef THREADS
end_critical_section();
#endif
return(0); /* errno set by system call. */
}
/*
* Return the id if the connection succeeded.
*/
return(fd);
}
/***********************************************************************
* Server side
**********************************************************************/
/*
* Creates a server port. Returns file
* descriptor (network socket) or 0 if connection fails.
*/
int
create_server_port(int port)
{
struct sockaddr_in inaddr; /* INET socket address. */
struct sockaddr *addr; /* address to connect to */
int addrlen; /* length of address */
int request, conn; /* Network socket */
/*
* Open the network connection.
*/
if ((request = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
return(0); /* errno set by system call. */
}
#ifdef SO_REUSEADDR
/* Necesary to restart the server without a reboot */
{
int one = 1;
setsockopt(request, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(int));
}
#endif /* SO_REUSEADDR */
#ifdef TCP_NODELAY
/* make sure to turn off TCP coalescence */
{ int mi;
setsockopt(request, IPPROTO_TCP, TCP_NODELAY, &mi, sizeof (int));
}
#endif
/* Set up the socket data. */
memset((char *)&inaddr, 0, sizeof(inaddr));
inaddr.sin_family = AF_INET;
inaddr.sin_port = htons(port);
inaddr.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(request, (struct sockaddr *)&inaddr, sizeof (inaddr)))
FEerror("Binding TCP socket", 0);
if (listen(request, 1))
FEerror("TCP listening", 0);
#ifdef THREADS
/* Don't make this file-descriptor non-blocking
* just block on it before we attempt to accept from it
* Think _hard_ about moving this out of here, into somewhere sane
* and creating an 'accepting' stream type, which is bound to a port
* on reading returns streams
*/
{
FILE *fp; /* need to use FILE *'s rather than fd... *sigh* */
if ((fp = fdopen(request, "r")) == (FILE *)0)
printf("fdopen didn't work on accept fd!\n"); fflush(stdout);
fcntl(request, F_SETFL, O_NONBLOCK);
clearerr(fp);
loop: errno = 0;
if ((conn = accept(request, (struct sockaddr *)NULL, (int *)NULL)) < 0)
if (errno) {
lwpblockon(active, fp, PD_INPUT);
clearerr(fp);
goto loop;
} else {
fclose(fp);
FEerror("Accepting requests", 0);
}
fclose(fp);
}
#else
if ((conn = accept(request, (struct sockaddr *)NULL, (int *)NULL)) < 0)
FEerror("Accepting requests", 0);
#endif /* THREADS */
return(conn);
}

View file

@ -1,871 +0,0 @@
/* Modified by Andrew.Vignaux@comp.vuw.ac.nz to get it to work :-) */
/* Copyright (C) 1985, 1986, 1987, 1988 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding! */
/*
* unexec.c - Convert a running program into an a.out file.
*
* Author: Spencer W. Thomas
* Computer Science Dept.
* University of Utah
* Date: Tue Mar 2 1982
* Modified heavily since then.
*
* Synopsis:
* unexec (new_name, a_name, data_start, bss_start, entry_address)
* char *new_name, *a_name;
* unsigned data_start, bss_start, entry_address;
*
* Takes a snapshot of the program and makes an a.out format file in the
* file named by the string argument new_name.
* If a_name is non-NULL, the symbol table will be taken from the given file.
* On some machines, an existing a_name file is required.
*
* The boundaries within the a.out file may be adjusted with the data_start
* and bss_start arguments. Either or both may be given as 0 for defaults.
*
* Data_start gives the boundary between the text segment and the data
* segment of the program. The text segment can contain shared, read-only
* program code and literal data, while the data segment is always unshared
* and unprotected. Data_start gives the lowest unprotected address.
* The value you specify may be rounded down to a suitable boundary
* as required by the machine you are using.
*
* Specifying zero for data_start means the boundary between text and data
* should not be the same as when the program was loaded.
* If NO_REMAP is defined, the argument data_start is ignored and the
* segment boundaries are never changed.
*
* Bss_start indicates how much of the data segment is to be saved in the
* a.out file and restored when the program is executed. It gives the lowest
* unsaved address, and is rounded up to a page boundary. The default when 0
* is given assumes that the entire data segment is to be stored, including
* the previous data and bss as well as any additional storage allocated with
* break (2).
*
* The new file is set up to start at entry_address.
*
* If you make improvements I'd like to get them too.
* harpo!utah-cs!thomas, thomas@Utah-20
*
*/
/* There are several compilation parameters affecting unexec:
* COFF
Define this if your system uses COFF for executables.
Otherwise we assume you use Berkeley format.
* NO_REMAP
Define this if you do not want to try to save Emacs's pure data areas
as part of the text segment.
Saving them as text is good because it allows users to share more.
However, on machines that locate the text area far from the data area,
the boundary cannot feasibly be moved. Such machines require
NO_REMAP.
Also, remapping can cause trouble with the built-in startup routine
/lib/crt0.o, which defines `environ' as an initialized variable.
Dumping `environ' as pure does not work! So, to use remapping,
you must write a startup routine for your machine in Emacs's crt0.c.
If NO_REMAP is defined, Emacs uses the system's crt0.o.
* SECTION_ALIGNMENT
Some machines that use COFF executables require that each section
start on a certain boundary *in the COFF file*. Such machines should
define SECTION_ALIGNMENT to a mask of the low-order bits that must be
zero on such a boundary. This mask is used to control padding between
segments in the COFF file.
If SECTION_ALIGNMENT is not defined, the segments are written
consecutively with no attempt at alignment. This is right for
unmodified system V.
* SEGMENT_MASK
Some machines require that the beginnings and ends of segments
*in core* be on certain boundaries. For most machines, a page
boundary is sufficient. That is the default. When a larger
boundary is needed, define SEGMENT_MASK to a mask of
the bits that must be zero on such a boundary.
* A_TEXT_OFFSET(HDR)
Some machines count the a.out header as part of the size of the text
segment (a_text); they may actually load the header into core as the
first data in the text segment. Some have additional padding between
the header and the real text of the program that is counted in a_text.
For these machines, define A_TEXT_OFFSET(HDR) to examine the header
structure HDR and return the number of bytes to add to `a_text'
before writing it (above and beyond the number of bytes of actual
program text). HDR's standard fields are already correct, except that
this adjustment to the `a_text' field has not yet been made;
thus, the amount of offset can depend on the data in the file.
* A_TEXT_SEEK(HDR)
If defined, this macro specifies the number of bytes to seek into the
a.out file before starting to write the text segment.a
* EXEC_MAGIC
For machines using COFF, this macro, if defined, is a value stored
into the magic number field of the output file.
* ADJUST_EXEC_HEADER
This macro can be used to generate statements to adjust or
initialize nonstandard fields in the file header
* ADDR_CORRECT(ADDR)
Macro to correct an int which is the bit pattern of a pointer to a byte
into an int which is the number of a byte.
This macro has a default definition which is usually right.
This default definition is a no-op on most machines (where a
pointer looks like an int) but not on all machines.
*/
#define XCOFF
#define COFF
#define NO_REMAP
#ifndef emacs
#define PERROR(arg) perror (arg); return -1
#else
#include <config.h>
#define PERROR(file) report_error (file, new)
#endif
#ifndef CANNOT_DUMP /* all rest of file! */
#ifndef CANNOT_UNEXEC /* most of rest of file */
#include <a.out.h>
/* Define getpagesize () if the system does not.
Note that this may depend on symbols defined in a.out.h
*/
#include "getpagesize.h"
#ifndef makedev /* Try to detect types.h already loaded */
#include <sys/types.h>
#endif
#include <stdio.h>
#include <sys/stat.h>
#include <errno.h>
extern char *start_of_text (); /* Start of text */
extern char *start_of_data (); /* Start of initialized data */
extern int _data;
extern int _edata;
extern int _text;
extern int _etext;
extern int _end;
#ifdef COFF
#ifndef USG
#ifndef STRIDE
#ifndef UMAX
#ifndef sun386
/* I have a suspicion that these are turned off on all systems
and can be deleted. Try it in version 19. */
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <syms.h>
#endif /* not sun386 */
#endif /* not UMAX */
#endif /* Not STRIDE */
#endif /* not USG */
static long block_copy_start; /* Old executable start point */
static struct filehdr f_hdr; /* File header */
static struct aouthdr f_ohdr; /* Optional file header (a.out) */
long bias; /* Bias to add for growth */
long lnnoptr; /* Pointer to line-number info within file */
#define SYMS_START block_copy_start
static long text_scnptr;
static long data_scnptr;
#ifdef XCOFF
static long load_scnptr;
static long orig_load_scnptr;
static long orig_data_scnptr;
#endif
static long data_st;
#ifndef MAX_SECTIONS
#define MAX_SECTIONS 10
#endif
#endif /* COFF */
static int pagemask;
/* Correct an int which is the bit pattern of a pointer to a byte
into an int which is the number of a byte.
This is a no-op on ordinary machines, but not on all. */
#ifndef ADDR_CORRECT /* Let m-*.h files override this definition */
#define ADDR_CORRECT(x) ((char *)(x) - (char*)0)
#endif
#ifdef emacs
static
report_error (file, fd)
char *file;
int fd;
{
if (fd)
close (fd);
error ("Failure operating on %s", file);
}
#endif /* emacs */
#define ERROR0(msg) report_error_1 (new, msg, 0, 0); return -1
#define ERROR1(msg,x) report_error_1 (new, msg, x, 0); return -1
#define ERROR2(msg,x,y) report_error_1 (new, msg, x, y); return -1
static
report_error_1 (fd, msg, a1, a2)
int fd;
char *msg;
int a1, a2;
{
close (fd);
#ifdef emacs
error (msg, a1, a2);
#else
fprintf (stderr, msg, a1, a2);
fprintf (stderr, "\n");
#endif
}
static int make_hdr ();
static void mark_x ();
static int copy_text_and_data ();
static int copy_sym ();
/* ****************************************************************
* unexec
*
* driving logic.
*/
unexec (new_name, a_name, data_start, bss_start, entry_address)
char *new_name, *a_name;
unsigned data_start, bss_start, entry_address;
{
int new, a_out = -1;
if (a_name && (a_out = open (a_name, 0)) < 0)
{
PERROR (a_name);
}
if ((new = creat (new_name, 0666)) < 0)
{
PERROR (new_name);
}
if (make_hdr (new,a_out,data_start,bss_start,entry_address,a_name,new_name) < 0
|| copy_text_and_data (new) < 0
|| copy_sym (new, a_out, a_name, new_name) < 0
#ifdef COFF
|| adjust_lnnoptrs (new, a_out, new_name) < 0
#endif
#ifdef XCOFF
|| unrelocate_symbols (new, a_out, a_name, new_name) < 0
#endif
)
{
close (new);
/* unlink (new_name); /* Failed, unlink new a.out */
return -1;
}
close (new);
if (a_out >= 0)
close (a_out);
mark_x (new_name);
return 0;
}
/* ****************************************************************
* make_hdr
*
* Make the header in the new a.out from the header in core.
* Modify the text and data sizes.
*/
static int
make_hdr (new, a_out, data_start, bss_start, entry_address, a_name, new_name)
int new, a_out;
unsigned data_start, bss_start, entry_address;
char *a_name;
char *new_name;
{
register int scns;
unsigned int bss_end;
struct scnhdr section[MAX_SECTIONS];
struct scnhdr * f_thdr; /* Text section header */
struct scnhdr * f_dhdr; /* Data section header */
struct scnhdr * f_bhdr; /* Bss section header */
struct scnhdr * f_lhdr; /* Loader section header */
struct scnhdr * f_tchdr; /* Typechk section header */
struct scnhdr * f_dbhdr; /* Debug section header */
struct scnhdr * f_xhdr; /* Except section header */
load_scnptr = orig_load_scnptr = lnnoptr = 0;
pagemask = getpagesize () - 1;
/* Adjust text/data boundary. */
#ifdef NO_REMAP
data_start = (long) start_of_data ();
#endif /* NO_REMAP */
data_start = ADDR_CORRECT (data_start);
#ifdef SEGMENT_MASK
data_start = data_start & ~SEGMENT_MASK; /* (Down) to segment boundary. */
#else
data_start = data_start & ~pagemask; /* (Down) to page boundary. */
#endif
bss_end = ADDR_CORRECT (sbrk (0)) + pagemask;
bss_end &= ~ pagemask;
/* Adjust data/bss boundary. */
if (bss_start != 0)
{
bss_start = (ADDR_CORRECT (bss_start) + pagemask);
/* (Up) to page bdry. */
bss_start &= ~ pagemask;
if (bss_start > bss_end)
{
ERROR1 ("unexec: Specified bss_start (%u) is past end of program",
bss_start);
}
}
else
bss_start = bss_end;
if (data_start > bss_start) /* Can't have negative data size. */
{
ERROR2 ("unexec: data_start (%u) can't be greater than bss_start (%u)",
data_start, bss_start);
}
#ifdef COFF
/* Salvage as much info from the existing file as possible */
block_copy_start = 0;
f_thdr = NULL; f_dhdr = NULL; f_bhdr = NULL;
f_lhdr = NULL; f_tchdr = NULL; f_dbhdr = NULL; f_xhdr = NULL;
if (a_out >= 0)
{
if (read (a_out, &f_hdr, sizeof (f_hdr)) != sizeof (f_hdr))
{
PERROR (a_name);
}
block_copy_start += sizeof (f_hdr);
if (f_hdr.f_opthdr > 0)
{
if (read (a_out, &f_ohdr, sizeof (f_ohdr)) != sizeof (f_ohdr))
{
PERROR (a_name);
}
block_copy_start += sizeof (f_ohdr);
}
if (f_hdr.f_nscns > MAX_SECTIONS)
{
ERROR0 ("unexec: too many section headers -- increase MAX_SECTIONS");
}
/* Loop through section headers */
for (scns = 0; scns < f_hdr.f_nscns; scns++) {
struct scnhdr *s = &section[scns];
if (read (a_out, s, sizeof (*s)) != sizeof (*s))
{
PERROR (a_name);
}
if (s->s_scnptr > 0L)
{
if (block_copy_start < s->s_scnptr + s->s_size)
block_copy_start = s->s_scnptr + s->s_size;
}
#define CHECK_SCNHDR(ptr, name, flags) \
if (strcmp(s->s_name, name) == 0) { \
if (s->s_flags != flags) { \
fprintf(stderr, "unexec: %x flags where %x expected in %s section.\n", \
s->s_flags, flags, name); \
} \
if (ptr) { \
fprintf(stderr, "unexec: duplicate section header for section %s.\n", \
name); \
} \
ptr = s; \
}
CHECK_SCNHDR(f_thdr, _TEXT, STYP_TEXT);
CHECK_SCNHDR(f_dhdr, _DATA, STYP_DATA);
CHECK_SCNHDR(f_bhdr, _BSS, STYP_BSS);
CHECK_SCNHDR(f_lhdr, _LOADER, STYP_LOADER);
CHECK_SCNHDR(f_dbhdr, _DEBUG, STYP_DEBUG);
CHECK_SCNHDR(f_tchdr, _TYPCHK, STYP_TYPCHK);
CHECK_SCNHDR(f_xhdr, _EXCEPT, STYP_EXCEPT);
}
if (f_thdr == 0)
{
ERROR1 ("unexec: couldn't find \"%s\" section", _TEXT);
}
if (f_dhdr == 0)
{
ERROR1 ("unexec: couldn't find \"%s\" section", _DATA);
}
if (f_bhdr == 0)
{
ERROR1 ("unexec: couldn't find \"%s\" section", _BSS);
}
}
else
{
ERROR0 ("can't build a COFF file from scratch yet");
}
orig_data_scnptr = f_dhdr->s_scnptr;
orig_load_scnptr = f_lhdr ? f_lhdr->s_scnptr : 0;
/* Now we alter the contents of all the f_*hdr variables
to correspond to what we want to dump. */
f_hdr.f_flags |= (F_RELFLG | F_EXEC); /* Why? */
#ifdef EXEC_MAGIC
f_ohdr.magic = EXEC_MAGIC;
#endif
#ifndef NO_REMAP
f_ohdr.tsize = data_start - f_ohdr.text_start;
f_ohdr.text_start = (long) start_of_text ();
#endif
f_ohdr.dsize = bss_start - ((unsigned) &_data);
f_ohdr.bsize = bss_end - bss_start;
f_dhdr->s_size = f_ohdr.dsize;
f_bhdr->s_size = f_ohdr.bsize;
f_bhdr->s_paddr = f_ohdr.dsize;
f_bhdr->s_vaddr = f_ohdr.dsize;
/* fix scnptr's */
{
long ptr;
for (scns = 0; scns < f_hdr.f_nscns; scns++) {
struct scnhdr *s = &section[scns];
if (scns == 0)
ptr = s->s_scnptr;
if (s->s_scnptr != 0)
{
s->s_scnptr = ptr;
}
if ((s->s_flags & 0xffff) == STYP_PAD)
{
/*
* the text_start should probably be o_algntext but that doesn't
* seem to change
*/
if (f_ohdr.text_start != 0) /* && scns != 0 */
{
s->s_size = 512 - (s->s_scnptr % 512);
if (s->s_size == 512)
s->s_size = 0;
}
}
ptr = ptr + s->s_size;
}
bias = ptr - block_copy_start;
}
/* fix other pointers */
for (scns = 0; scns < f_hdr.f_nscns; scns++) {
struct scnhdr *s = &section[scns];
if (s->s_relptr != 0)
{
s->s_relptr += bias;
}
if (s->s_lnnoptr != 0)
{
if (lnnoptr == 0) lnnoptr = s->s_lnnoptr;
s->s_lnnoptr += bias;
}
}
if (f_hdr.f_symptr > 0L)
{
f_hdr.f_symptr += bias;
}
data_st = data_start;
text_scnptr = f_thdr->s_scnptr;
data_scnptr = f_dhdr->s_scnptr;
load_scnptr = f_lhdr ? f_lhdr->s_scnptr : 0;
block_copy_start = orig_load_scnptr;
#ifdef ADJUST_EXEC_HEADER
ADJUST_EXEC_HEADER
#endif /* ADJUST_EXEC_HEADER */
if (write (new, &f_hdr, sizeof (f_hdr)) != sizeof (f_hdr))
{
PERROR (new_name);
}
if (f_hdr.f_opthdr > 0)
{
if (write (new, &f_ohdr, sizeof (f_ohdr)) != sizeof (f_ohdr))
{
PERROR (new_name);
}
}
for (scns = 0; scns < f_hdr.f_nscns; scns++) {
struct scnhdr *s = &section[scns];
if (write (new, s, sizeof (*s)) != sizeof (*s))
{
PERROR (new_name);
}
}
return (0);
#endif /* COFF */
}
/* ****************************************************************
*
* Copy the text and data segments from memory to the new a.out
*/
static int
copy_text_and_data (new)
int new;
{
register char *end;
register char *ptr;
lseek (new, (long) text_scnptr, 0);
ptr = start_of_text () + text_scnptr;
end = ptr + f_ohdr.tsize;
write_segment (new, ptr, end);
lseek (new, (long) data_scnptr, 0);
ptr = (char *) &_data;
end = ptr + f_ohdr.dsize;
write_segment (new, ptr, end);
return 0;
}
write_segment (new, ptr, end)
int new;
register char *ptr, *end;
{
register int i, nwrite, ret;
char buf[80];
extern int errno;
char zeros[128];
bzero (zeros, sizeof zeros);
for (i = 0; ptr < end;)
{
/* distance to next multiple of 128. */
nwrite = (((int) ptr + 128) & -128) - (int) ptr;
/* But not beyond specified end. */
if (nwrite > end - ptr) nwrite = end - ptr;
ret = write (new, ptr, nwrite);
/* If write gets a page fault, it means we reached
a gap between the old text segment and the old data segment.
This gap has probably been remapped into part of the text segment.
So write zeros for it. */
if (ret == -1 && errno == EFAULT)
{
write (new, zeros, nwrite);
}
else if (nwrite != ret)
{
sprintf (buf,
"unexec write failure: addr 0x%x, fileno %d, size 0x%x, wrote 0x%x, errno %d",
ptr, new, nwrite, ret, errno);
PERROR (buf);
}
i += nwrite;
ptr += nwrite;
}
}
/* ****************************************************************
* copy_sym
*
* Copy the relocation information and symbol table from the a.out to the new
*/
static int
copy_sym (new, a_out, a_name, new_name)
int new, a_out;
char *a_name, *new_name;
{
char page[1024];
int n;
if (a_out < 0)
return 0;
if (SYMS_START == 0L)
return 0;
if (lnnoptr && lnnoptr < SYMS_START) /* if there is line number info */
lseek (a_out, lnnoptr, 0); /* start copying from there */
else
lseek (a_out, SYMS_START, 0); /* Position a.out to symtab. */
while ((n = read (a_out, page, sizeof page)) > 0)
{
if (write (new, page, n) != n)
{
PERROR (new_name);
}
}
if (n < 0)
{
PERROR (a_name);
}
return 0;
}
/* ****************************************************************
* mark_x
*
* After successfully building the new a.out, mark it executable
*/
static void
mark_x (name)
char *name;
{
struct stat sbuf;
int um;
int new = 0; /* for PERROR */
um = umask (777);
umask (um);
if (stat (name, &sbuf) == -1)
{
PERROR (name);
}
sbuf.st_mode |= 0111 & ~um;
if (chmod (name, sbuf.st_mode) == -1)
PERROR (name);
}
/*
* If the COFF file contains a symbol table and a line number section,
* then any auxiliary entries that have values for x_lnnoptr must
* be adjusted by the amount that the line number section has moved
* in the file (bias computed in make_hdr). The #@$%&* designers of
* the auxiliary entry structures used the absolute file offsets for
* the line number entry rather than an offset from the start of the
* line number section!
*
* When I figure out how to scan through the symbol table and pick out
* the auxiliary entries that need adjustment, this routine will
* be fixed. As it is now, all such entries are wrong and sdb
* will complain. Fred Fish, UniSoft Systems Inc.
*/
#ifdef COFF
/* This function is probably very slow. Instead of reopening the new
file for input and output it should copy from the old to the new
using the two descriptors already open (WRITEDESC and READDESC).
Instead of reading one small structure at a time it should use
a reasonable size buffer. But I don't have time to work on such
things, so I am installing it as submitted to me. -- RMS. */
adjust_lnnoptrs (writedesc, readdesc, new_name)
int writedesc;
int readdesc;
char *new_name;
{
register int nsyms;
register int new;
#ifdef amdahl_uts
SYMENT symentry;
AUXENT auxentry;
#else
struct syment symentry;
union auxent auxentry;
#endif
if (!lnnoptr || !f_hdr.f_symptr)
return 0;
if ((new = open (new_name, 2)) < 0)
{
PERROR (new_name);
return -1;
}
lseek (new, f_hdr.f_symptr, 0);
for (nsyms = 0; nsyms < f_hdr.f_nsyms; nsyms++)
{
read (new, &symentry, SYMESZ);
if (symentry.n_numaux)
{
read (new, &auxentry, AUXESZ);
nsyms++;
if (ISFCN (symentry.n_type)) {
auxentry.x_sym.x_fcnary.x_fcn.x_lnnoptr += bias;
lseek (new, -AUXESZ, 1);
write (new, &auxentry, AUXESZ);
}
}
}
close (new);
}
#endif /* COFF */
#ifdef XCOFF
/* It is probably a false economy to optimise this routine (it used to
read one LDREL and do do two lseeks per iteration) but the wrath of
RMS (see above :-) would be too much to bear */
unrelocate_symbols (new, a_out, a_name, new_name)
int new, a_out;
char *a_name, *new_name;
{
register int i;
register int l;
register LDREL *ldrel;
LDHDR ldhdr;
LDREL ldrel_buf [20];
ulong t_start = (ulong) &_text;
ulong d_start = (ulong) &_data;
int * p;
int dirty;
if (load_scnptr == 0)
return 0;
lseek (a_out, orig_load_scnptr, 0);
if (read (a_out, &ldhdr, sizeof (ldhdr)) != sizeof (ldhdr))
{
PERROR (new_name);
}
#define SYMNDX_TEXT 0
#define SYMNDX_DATA 1
#define SYMNDX_BSS 2
l = 0;
for (i = 0; i < ldhdr.l_nreloc; i++, l--, ldrel++)
{
if (l == 0) {
lseek (a_out,
orig_load_scnptr + LDHDRSZ + LDSYMSZ*ldhdr.l_nsyms + LDRELSZ*i,
0);
l = ldhdr.l_nreloc - i;
if (l > sizeof (ldrel_buf) / LDRELSZ)
l = sizeof (ldrel_buf) / LDRELSZ;
if (read (a_out, ldrel_buf, l * LDRELSZ) != l * LDRELSZ)
{
PERROR (a_name);
}
ldrel = ldrel_buf;
}
dirty = 0;
/* this code may not be necessary */
/* I originally had == in the "assignment" and it still unrelocated */
/* move the BSS loader symbols to the DATA segment */
if (ldrel->l_rsecnm == f_ohdr.o_snbss)
ldrel->l_rsecnm = f_ohdr.o_sndata, dirty++;
if (ldrel->l_symndx == SYMNDX_BSS)
ldrel->l_symndx = SYMNDX_DATA, dirty++;
if (dirty)
{
lseek (new,
load_scnptr + LDHDRSZ + LDSYMSZ*ldhdr.l_nsyms + LDRELSZ*i,
0);
if (write (new, ldrel, LDRELSZ) != LDRELSZ)
{
PERROR (new_name);
}
}
if (ldrel->l_rsecnm == f_ohdr.o_sndata)
{
int orig_int;
lseek (a_out, orig_data_scnptr + ldrel->l_vaddr, 0);
if (read (a_out, (void *) &orig_int, sizeof (orig_int)) != sizeof (orig_int))
{
PERROR (a_name);
}
switch (ldrel->l_symndx) {
case SYMNDX_TEXT:
p = (int *) (d_start + ldrel->l_vaddr);
orig_int = * p - (t_start - f_ohdr.text_start);
break;
case SYMNDX_DATA:
case SYMNDX_BSS:
p = (int *) (d_start + ldrel->l_vaddr);
orig_int = * p - (d_start - f_ohdr.data_start);
break;
}
lseek (new, data_scnptr + ldrel->l_vaddr, 0);
if (write (new, (void *) &orig_int, sizeof (orig_int)) != sizeof (orig_int))
{
PERROR (new_name);
}
}
}
}
#endif /* XCOFF */
#endif /* not CANNOT_UNEXEC */
#endif /* not CANNOT_DUMP */

File diff suppressed because it is too large Load diff

View file

@ -1,781 +0,0 @@
/* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding! */
/*
* unexec.c - Convert a running program into an a.out file.
*
* Author: Spencer W. Thomas
* Computer Science Dept.
* University of Utah
* Date: Tue Mar 2 1982
* Modified heavily since then.
*
* Synopsis:
* unexec (new_name, a_name, data_start, bss_start, entry_address)
* char *new_name, *a_name;
* unsigned data_start, bss_start, entry_address;
*
* Takes a snapshot of the program and makes an a.out format file in the
* file named by the string argument new_name.
* If a_name is non-NULL, the symbol table will be taken from the given file.
* On some machines, an existing a_name file is required.
*
* The boundaries within the a.out file may be adjusted with the data_start
* and bss_start arguments. Either or both may be given as 0 for defaults.
*
* Data_start gives the boundary between the text segment and the data
* segment of the program. The text segment can contain shared, read-only
* program code and literal data, while the data segment is always unshared
* and unprotected. Data_start gives the lowest unprotected address.
* The value you specify may be rounded down to a suitable boundary
* as required by the machine you are using.
*
* Specifying zero for data_start means the boundary between text and data
* should not be the same as when the program was loaded.
* If NO_REMAP is defined, the argument data_start is ignored and the
* segment boundaries are never changed.
*
* Bss_start indicates how much of the data segment is to be saved in the
* a.out file and restored when the program is executed. It gives the lowest
* unsaved address, and is rounded up to a page boundary. The default when 0
* is given assumes that the entire data segment is to be stored, including
* the previous data and bss as well as any additional storage allocated with
* break (2).
*
* The new file is set up to start at entry_address.
*
* If you make improvements I'd like to get them too.
* harpo!utah-cs!thomas, thomas@Utah-20
*
*/
/* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
* ELF support added.
*
* Basic theory: the data space of the running process needs to be
* dumped to the output file. Normally we would just enlarge the size
* of .data, scooting everything down. But we can't do that in ELF,
* because there is often something between the .data space and the
* .bss space.
*
* In the temacs dump below, notice that the Global Offset Table
* (.got) and the Dynamic link data (.dynamic) come between .data1 and
* .bss. It does not work to overlap .data with these fields.
*
* The solution is to create a new .data segment. This segment is
* filled with data from the current process. Since the contents of
* various sections refer to sections by index, the new .data segment
* is made the last in the table to avoid changing any existing index.
* This is an example of how the section headers are changed. "Addr"
* is a process virtual address. "Offset" is a file offset.
raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
temacs:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 8 3 0x80a98f4 0x608f4 0x449c .bss
0 0 0x4 0
[17] 2 0 0 0x608f4 0x9b90 .symtab
18 371 0x4 0x10
[18] 3 0 0 0x6a484 0x8526 .strtab
0 0 0x1 0
[19] 3 0 0 0x729aa 0x93 .shstrtab
0 0 0x1 0
[20] 1 0 0 0x72a3d 0x68b7 .comment
0 0 0x1 0
raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
xemacs:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 8 3 0x80c6800 0x7d800 0 .bss
0 0 0x4 0
[17] 2 0 0 0x7d800 0x9b90 .symtab
18 371 0x4 0x10
[18] 3 0 0 0x87390 0x8526 .strtab
0 0 0x1 0
[19] 3 0 0 0x8f8b6 0x93 .shstrtab
0 0 0x1 0
[20] 1 0 0 0x8f949 0x68b7 .comment
0 0 0x1 0
[21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
0 0 0x4 0
* This is an example of how the file header is changed. "Shoff" is
* the section header offset within the file. Since that table is
* after the new .data section, it is moved. "Shnum" is the number of
* sections, which we increment.
*
* "Phoff" is the file offset to the program header. "Phentsize" and
* "Shentsz" are the program and section header entries sizes respectively.
* These can be larger than the apparent struct sizes.
raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
temacs:
**** ELF HEADER ****
Class Data Type Machine Version
Entry Phoff Shoff Flags Ehsize
Phentsize Phnum Shentsz Shnum Shstrndx
1 1 2 3 1
0x80499cc 0x34 0x792f4 0 0x34
0x20 5 0x28 21 19
raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
xemacs:
**** ELF HEADER ****
Class Data Type Machine Version
Entry Phoff Shoff Flags Ehsize
Phentsize Phnum Shentsz Shnum Shstrndx
1 1 2 3 1
0x80499cc 0x34 0x96200 0 0x34
0x20 5 0x28 22 19
* These are the program headers. "Offset" is the file offset to the
* segment. "Vaddr" is the memory load address. "Filesz" is the
* segment size as it appears in the file, and "Memsz" is the size in
* memory. Below, the third segment is the code and the fourth is the
* data: the difference between Filesz and Memsz is .bss
raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
temacs:
***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align
6 0x34 0x8048034 0
0xa0 0xa0 5 0
3 0xd4 0 0
0x13 0 4 0
1 0x34 0x8048034 0
0x3f2f9 0x3f2f9 5 0x1000
1 0x3f330 0x8088330 0
0x215c4 0x25a60 7 0x1000
2 0x60874 0x80a9874 0
0x80 0 7 0
raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
xemacs:
***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align
6 0x34 0x8048034 0
0xa0 0xa0 5 0
3 0xd4 0 0
0x13 0 4 0
1 0x34 0x8048034 0
0x3f2f9 0x3f2f9 5 0x1000
1 0x3f330 0x8088330 0
0x3e4d0 0x3e4d0 7 0x1000
2 0x60874 0x80a9874 0
0x80 0 7 0
*/
/* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
*
* The above mechanism does not work if the unexeced ELF file is being
* re-layout by other applications (such as `strip'). All the applications
* that re-layout the internal of ELF will layout all sections in ascending
* order of their file offsets. After the re-layout, the data2 section will
* still be the LAST section in the section header vector, but its file offset
* is now being pushed far away down, and causes part of it not to be mapped
* in (ie. not covered by the load segment entry in PHDR vector), therefore
* causes the new binary to fail.
*
* The solution is to modify the unexec algorithm to insert the new data2
* section header right before the new bss section header, so their file
* offsets will be in the ascending order. Since some of the section's (all
* sections AFTER the bss section) indexes are now changed, we also need to
* modify some fields to make them point to the right sections. This is done
* by macro PATCH_INDEX. All the fields that need to be patched are:
*
* 1. ELF header e_shstrndx field.
* 2. section header sh_link and sh_info field.
* 3. symbol table entry st_shndx field.
*
* The above example now should look like:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
0 0 0x4 0
[17] 8 3 0x80c6800 0x7d800 0 .bss
0 0 0x4 0
[18] 2 0 0 0x7d800 0x9b90 .symtab
19 371 0x4 0x10
[19] 3 0 0 0x87390 0x8526 .strtab
0 0 0x1 0
[20] 3 0 0 0x8f8b6 0x93 .shstrtab
0 0 0x1 0
[21] 1 0 0 0x8f949 0x68b7 .comment
0 0 0x1 0
*/
#include <sys/types.h>
#include <stdio.h>
#include <sys/stat.h>
#include <memory.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <elf.h>
#include <sys/mman.h>
#ifndef emacs
#define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
#else
extern void fatal (char *, ...);
#endif
/* Get the address of a particular section or program header entry,
* accounting for the size of the entries.
*/
#define OLD_SECTION_H(n) \
(*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
#define NEW_SECTION_H(n) \
(*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
#define OLD_PROGRAM_H(n) \
(*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
#define NEW_PROGRAM_H(n) \
(*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
#define PATCH_INDEX(n) \
do { \
if ((int) (n) >= old_bss_index) \
(n)++; } while (0)
typedef unsigned char byte;
/* Round X up to a multiple of Y. */
int
round_up (x, y)
int x, y;
{
int rem = x % y;
if (rem == 0)
return x;
return x - rem + y;
}
/* ****************************************************************
* unexec
*
* driving logic.
*
* In ELF, this works by replacing the old .bss section with a new
* .data section, and inserting an empty .bss immediately afterwards.
*
*/
void
unexec (new_name, old_name, data_start, bss_start, entry_address)
char *new_name, *old_name;
unsigned data_start, bss_start, entry_address;
{
extern unsigned int data_end;
int new_file, old_file, new_file_size;
/* Pointers to the base of the image of the two files. */
caddr_t old_base, new_base;
/* Pointers to the file, program and section headers for the old and new
* files.
*/
Elf32_Ehdr *old_file_h, *new_file_h;
Elf32_Phdr *old_program_h, *new_program_h;
Elf32_Shdr *old_section_h, *new_section_h;
/* Point to the section name table in the old file */
char *old_section_names;
Elf32_Addr old_bss_addr, new_bss_addr;
Elf32_Word old_bss_size, new_data2_size;
Elf32_Off new_data2_offset;
Elf32_Addr new_data2_addr;
int n, nn, old_bss_index, old_data_index, new_data2_index;
struct stat stat_buf;
/* Open the old file & map it into the address space. */
old_file = open (old_name, O_RDONLY);
if (old_file < 0)
fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
if (fstat (old_file, &stat_buf) == -1)
fatal ("Can't fstat (%s): errno %d\n", old_name, errno);
old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
if (old_base == (caddr_t) -1)
fatal ("Can't mmap (%s): errno %d\n", old_name, errno);
#ifdef DEBUG
fprintf (stderr, "mmap (%s, %x) -> %x\n", old_name, stat_buf.st_size,
old_base);
#endif
/* Get pointers to headers & section names */
old_file_h = (Elf32_Ehdr *) old_base;
old_program_h = (Elf32_Phdr *) ((byte *) old_base + old_file_h->e_phoff);
old_section_h = (Elf32_Shdr *) ((byte *) old_base + old_file_h->e_shoff);
old_section_names = (char *) old_base
+ OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
/* Find the old .bss section. Figure out parameters of the new
* data2 and bss sections.
*/
for (old_bss_index = 1; old_bss_index < (int) old_file_h->e_shnum;
old_bss_index++)
{
#ifdef DEBUG
fprintf (stderr, "Looking for .bss - found %s\n",
old_section_names + OLD_SECTION_H (old_bss_index).sh_name);
#endif
if (!strcmp (old_section_names + OLD_SECTION_H (old_bss_index).sh_name,
".bss"))
break;
}
if (old_bss_index == old_file_h->e_shnum)
fatal ("Can't find .bss in %s.\n", old_name, 0);
old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
new_bss_addr = (Elf32_Addr) data_end;
new_data2_addr = old_bss_addr;
new_data2_size = new_bss_addr - old_bss_addr;
new_data2_offset = OLD_SECTION_H (old_bss_index).sh_offset;
#ifdef DEBUG
fprintf (stderr, "old_bss_index %d\n", old_bss_index);
fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
fprintf (stderr, "old_bss_size %x\n", old_bss_size);
fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
fprintf (stderr, "new_data2_size %x\n", new_data2_size);
fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
#endif
if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
fatal (".bss shrank when undumping???\n", 0, 0);
/* Set the output file to the right size and mmap it. Set
* pointers to various interesting objects. stat_buf still has
* old_file data.
*/
new_file = open (new_name, O_RDWR | O_CREAT, 0666);
if (new_file < 0)
fatal ("Can't creat (%s): errno %d\n", new_name, errno);
new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size;
if (ftruncate (new_file, new_file_size))
fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
new_file, 0);
if (new_base == (caddr_t) -1)
fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
new_file_h = (Elf32_Ehdr *) new_base;
new_program_h = (Elf32_Phdr *) ((byte *) new_base + old_file_h->e_phoff);
new_section_h = (Elf32_Shdr *)
((byte *) new_base + old_file_h->e_shoff + new_data2_size);
/* Make our new file, program and section headers as copies of the
* originals.
*/
memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
memcpy (new_program_h, old_program_h,
old_file_h->e_phnum * old_file_h->e_phentsize);
/* Modify the e_shstrndx if necessary. */
PATCH_INDEX (new_file_h->e_shstrndx);
/* Fix up file header. We'll add one section. Section header is
* further away now.
*/
new_file_h->e_shoff += new_data2_size;
new_file_h->e_shnum += 1;
#ifdef DEBUG
fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
#endif
/* Fix up a new program header. Extend the writable data segment so
* that the bss area is covered too. Find that segment by looking
* for a segment that ends just before the .bss area. Make sure
* that no segments are above the new .data2. Put a loop at the end
* to adjust the offset and address of any segment that is above
* data2, just in case we decide to allow this later.
*/
for (n = new_file_h->e_phnum - 1; n >= 0; n--)
{
/* Compute maximum of all requirements for alignment of section. */
int alignment = (NEW_PROGRAM_H (n)).p_align;
if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr)
fatal ("Program segment above .bss in %s\n", old_name, 0);
if (NEW_PROGRAM_H (n).p_type == PT_LOAD
&& (round_up ((NEW_PROGRAM_H (n)).p_vaddr
+ (NEW_PROGRAM_H (n)).p_filesz,
alignment)
== round_up (old_bss_addr, alignment)))
break;
}
if (n < 0)
fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
NEW_PROGRAM_H (n).p_filesz += new_data2_size;
NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
#if 0 /* Maybe allow section after data2 - does this ever happen? */
for (n = new_file_h->e_phnum - 1; n >= 0; n--)
{
if (NEW_PROGRAM_H (n).p_vaddr
&& NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
NEW_PROGRAM_H (n).p_vaddr += new_data2_size - old_bss_size;
if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
NEW_PROGRAM_H (n).p_offset += new_data2_size;
}
#endif
/* Fix up section headers based on new .data2 section. Any section
* whose offset or virtual address is after the new .data2 section
* gets its value adjusted. .bss size becomes zero and new address
* is set. data2 section header gets added by copying the existing
* .data header and modifying the offset, address and size.
*/
for (old_data_index = 1; old_data_index < (int) old_file_h->e_shnum;
old_data_index++)
if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
".data"))
break;
if (old_data_index == old_file_h->e_shnum)
fatal ("Can't find .data in %s.\n", old_name, 0);
/* Walk through all section headers, insert the new data2 section right
before the new bss section. */
for (n = 1, nn = 1; n < (int) old_file_h->e_shnum; n++, nn++)
{
caddr_t src;
/* If it is bss section, insert the new data2 section before it. */
if (n == old_bss_index)
{
/* Steal the data section header for this data2 section. */
memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
new_file_h->e_shentsize);
NEW_SECTION_H (nn).sh_addr = new_data2_addr;
NEW_SECTION_H (nn).sh_offset = new_data2_offset;
NEW_SECTION_H (nn).sh_size = new_data2_size;
/* Use the bss section's alignment. This will assure that the
new data2 section always be placed in the same spot as the old
bss section by any other application. */
NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
/* Now copy over what we have in the memory now. */
memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
(caddr_t) OLD_SECTION_H (n).sh_addr,
new_data2_size);
nn++;
}
memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
old_file_h->e_shentsize);
/* The new bss section's size is zero, and its file offset and virtual
address should be off by NEW_DATA2_SIZE. */
if (n == old_bss_index)
{
/* NN should be `old_bss_index + 1' at this point. */
NEW_SECTION_H (nn).sh_offset += new_data2_size;
NEW_SECTION_H (nn).sh_addr += new_data2_size;
/* Let the new bss section address alignment be the same as the
section address alignment followed the old bss section, so
this section will be placed in exactly the same place. */
NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
NEW_SECTION_H (nn).sh_size = 0;
}
/* Any section that was original placed AFTER the bss section should now
be off by NEW_DATA2_SIZE. */
else if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
NEW_SECTION_H (nn).sh_offset += new_data2_size;
/* If any section hdr refers to the section after the new .data
section, make it refer to next one because we have inserted
a new section in between. */
PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
/* Now, start to copy the content of sections. */
if (NEW_SECTION_H (nn).sh_type == SHT_NULL
|| NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
continue;
/* Write out the sections. .data and .data1 (and data2, called
* ".data" in the strings table) get copied from the current process
* instead of the old file.
*/
if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data")
|| !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
".data1"))
src = (caddr_t) OLD_SECTION_H (n).sh_addr;
else
src = old_base + OLD_SECTION_H (n).sh_offset;
memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
NEW_SECTION_H (nn).sh_size);
/* If it is the symbol table, its st_shndx field needs to be patched. */
if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
|| NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
{
Elf32_Shdr *spt = &NEW_SECTION_H (nn);
unsigned int num = spt->sh_size / spt->sh_entsize;
Elf32_Sym * sym = (Elf32_Sym *) (NEW_SECTION_H (nn).sh_offset +
new_base);
for (; num--; sym++)
{
if ((sym->st_shndx == SHN_UNDEF)
|| (sym->st_shndx == SHN_ABS)
|| (sym->st_shndx == SHN_COMMON))
continue;
PATCH_INDEX (sym->st_shndx);
}
}
}
/* Close the files and make the new file executable */
if (close (old_file))
fatal ("Can't close (%s): errno %d\n", old_name, errno);
if (close (new_file))
fatal ("Can't close (%s): errno %d\n", new_name, errno);
if (stat (new_name, &stat_buf) == -1)
fatal ("Can't stat (%s): errno %d\n", new_name, errno);
n = umask (777);
umask (n);
stat_buf.st_mode |= 0111 & ~n;
if (chmod (new_name, stat_buf.st_mode) == -1)
fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
}

View file

@ -1,854 +0,0 @@
/* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding! */
/*
* unexec.c - Convert a running program into an a.out file.
*
* Author: Spencer W. Thomas
* Computer Science Dept.
* University of Utah
* Date: Tue Mar 2 1982
* Modified heavily since then.
*
* Synopsis:
* unexec (new_name, a_name, data_start, bss_start, entry_address)
* char *new_name, *a_name;
* unsigned data_start, bss_start, entry_address;
*
* Takes a snapshot of the program and makes an a.out format file in the
* file named by the string argument new_name.
* If a_name is non-NULL, the symbol table will be taken from the given file.
* On some machines, an existing a_name file is required.
*
* The boundaries within the a.out file may be adjusted with the data_start
* and bss_start arguments. Either or both may be given as 0 for defaults.
*
* Data_start gives the boundary between the text segment and the data
* segment of the program. The text segment can contain shared, read-only
* program code and literal data, while the data segment is always unshared
* and unprotected. Data_start gives the lowest unprotected address.
* The value you specify may be rounded down to a suitable boundary
* as required by the machine you are using.
*
* Specifying zero for data_start means the boundary between text and data
* should not be the same as when the program was loaded.
* If NO_REMAP is defined, the argument data_start is ignored and the
* segment boundaries are never changed.
*
* Bss_start indicates how much of the data segment is to be saved in the
* a.out file and restored when the program is executed. It gives the lowest
* unsaved address, and is rounded up to a page boundary. The default when 0
* is given assumes that the entire data segment is to be stored, including
* the previous data and bss as well as any additional storage allocated with
* break (2).
*
* The new file is set up to start at entry_address.
*
* If you make improvements I'd like to get them too.
* harpo!utah-cs!thomas, thomas@Utah-20
*
*/
/* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
* ELF support added.
*
* Basic theory: the data space of the running process needs to be
* dumped to the output file. Normally we would just enlarge the size
* of .data, scooting everything down. But we can't do that in ELF,
* because there is often something between the .data space and the
* .bss space.
*
* In the temacs dump below, notice that the Global Offset Table
* (.got) and the Dynamic link data (.dynamic) come between .data1 and
* .bss. It does not work to overlap .data with these fields.
*
* The solution is to create a new .data segment. This segment is
* filled with data from the current process. Since the contents of
* various sections refer to sections by index, the new .data segment
* is made the last in the table to avoid changing any existing index.
* This is an example of how the section headers are changed. "Addr"
* is a process virtual address. "Offset" is a file offset.
raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
temacs:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 8 3 0x80a98f4 0x608f4 0x449c .bss
0 0 0x4 0
[17] 2 0 0 0x608f4 0x9b90 .symtab
18 371 0x4 0x10
[18] 3 0 0 0x6a484 0x8526 .strtab
0 0 0x1 0
[19] 3 0 0 0x729aa 0x93 .shstrtab
0 0 0x1 0
[20] 1 0 0 0x72a3d 0x68b7 .comment
0 0 0x1 0
raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
xemacs:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 8 3 0x80c6800 0x7d800 0 .bss
0 0 0x4 0
[17] 2 0 0 0x7d800 0x9b90 .symtab
18 371 0x4 0x10
[18] 3 0 0 0x87390 0x8526 .strtab
0 0 0x1 0
[19] 3 0 0 0x8f8b6 0x93 .shstrtab
0 0 0x1 0
[20] 1 0 0 0x8f949 0x68b7 .comment
0 0 0x1 0
[21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
0 0 0x4 0
* This is an example of how the file header is changed. "Shoff" is
* the section header offset within the file. Since that table is
* after the new .data section, it is moved. "Shnum" is the number of
* sections, which we increment.
*
* "Phoff" is the file offset to the program header. "Phentsize" and
* "Shentsz" are the program and section header entries sizes respectively.
* These can be larger than the apparent struct sizes.
raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
temacs:
**** ELF HEADER ****
Class Data Type Machine Version
Entry Phoff Shoff Flags Ehsize
Phentsize Phnum Shentsz Shnum Shstrndx
1 1 2 3 1
0x80499cc 0x34 0x792f4 0 0x34
0x20 5 0x28 21 19
raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
xemacs:
**** ELF HEADER ****
Class Data Type Machine Version
Entry Phoff Shoff Flags Ehsize
Phentsize Phnum Shentsz Shnum Shstrndx
1 1 2 3 1
0x80499cc 0x34 0x96200 0 0x34
0x20 5 0x28 22 19
* These are the program headers. "Offset" is the file offset to the
* segment. "Vaddr" is the memory load address. "Filesz" is the
* segment size as it appears in the file, and "Memsz" is the size in
* memory. Below, the third segment is the code and the fourth is the
* data: the difference between Filesz and Memsz is .bss
raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
temacs:
***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align
6 0x34 0x8048034 0
0xa0 0xa0 5 0
3 0xd4 0 0
0x13 0 4 0
1 0x34 0x8048034 0
0x3f2f9 0x3f2f9 5 0x1000
1 0x3f330 0x8088330 0
0x215c4 0x25a60 7 0x1000
2 0x60874 0x80a9874 0
0x80 0 7 0
raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
xemacs:
***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align
6 0x34 0x8048034 0
0xa0 0xa0 5 0
3 0xd4 0 0
0x13 0 4 0
1 0x34 0x8048034 0
0x3f2f9 0x3f2f9 5 0x1000
1 0x3f330 0x8088330 0
0x3e4d0 0x3e4d0 7 0x1000
2 0x60874 0x80a9874 0
0x80 0 7 0
*/
/* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
*
* The above mechanism does not work if the unexeced ELF file is being
* re-layout by other applications (such as `strip'). All the applications
* that re-layout the internal of ELF will layout all sections in ascending
* order of their file offsets. After the re-layout, the data2 section will
* still be the LAST section in the section header vector, but its file offset
* is now being pushed far away down, and causes part of it not to be mapped
* in (ie. not covered by the load segment entry in PHDR vector), therefore
* causes the new binary to fail.
*
* The solution is to modify the unexec algorithm to insert the new data2
* section header right before the new bss section header, so their file
* offsets will be in the ascending order. Since some of the section's (all
* sections AFTER the bss section) indexes are now changed, we also need to
* modify some fields to make them point to the right sections. This is done
* by macro PATCH_INDEX. All the fields that need to be patched are:
*
* 1. ELF header e_shstrndx field.
* 2. section header sh_link and sh_info field.
* 3. symbol table entry st_shndx field.
*
* The above example now should look like:
**** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
Link Info Adralgn Entsize
[1] 1 2 0x80480d4 0xd4 0x13 .interp
0 0 0x1 0
[2] 5 2 0x80480e8 0xe8 0x388 .hash
3 0 0x4 0x4
[3] 11 2 0x8048470 0x470 0x7f0 .dynsym
4 1 0x4 0x10
[4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
0 0 0x1 0
[5] 9 2 0x8049010 0x1010 0x338 .rel.plt
3 7 0x4 0x8
[6] 1 6 0x8049348 0x1348 0x3 .init
0 0 0x4 0
[7] 1 6 0x804934c 0x134c 0x680 .plt
0 0 0x4 0x4
[8] 1 6 0x80499cc 0x19cc 0x3c56f .text
0 0 0x4 0
[9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
0 0 0x4 0
[10] 1 2 0x8085f40 0x3df40 0x69c .rodata
0 0 0x4 0
[11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
0 0 0x4 0
[12] 1 3 0x8088330 0x3f330 0x20afc .data
0 0 0x4 0
[13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
0 0 0x4 0
[14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
0 0 0x4 0x4
[15] 6 3 0x80a9874 0x60874 0x80 .dynamic
4 0 0x4 0x8
[16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
0 0 0x4 0
[17] 8 3 0x80c6800 0x7d800 0 .bss
0 0 0x4 0
[18] 2 0 0 0x7d800 0x9b90 .symtab
19 371 0x4 0x10
[19] 3 0 0 0x87390 0x8526 .strtab
0 0 0x1 0
[20] 3 0 0 0x8f8b6 0x93 .shstrtab
0 0 0x1 0
[21] 1 0 0 0x8f949 0x68b7 .comment
0 0 0x1 0
*/
#include <sys/types.h>
#include <stdio.h>
#include <sys/stat.h>
#include <memory.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <elf.h>
#include <syms.h> /* for HDRR declaration */
#include <sys/mman.h>
#ifndef emacs
#define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1)
#else
extern void fatal(char *, ...);
#endif
/* Get the address of a particular section or program header entry,
* accounting for the size of the entries.
*/
#define OLD_SECTION_H(n) \
(*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
#define NEW_SECTION_H(n) \
(*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
#define OLD_PROGRAM_H(n) \
(*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
#define NEW_PROGRAM_H(n) \
(*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
#define PATCH_INDEX(n) \
do { \
if ((n) >= old_bss_index) \
(n)++; } while (0)
typedef unsigned char byte;
/* Round X up to a multiple of Y. */
int
round_up (x, y)
int x, y;
{
int rem = x % y;
if (rem == 0)
return x;
return x - rem + y;
}
/* ****************************************************************
* unexec
*
* driving logic.
*
* In ELF, this works by replacing the old .bss section with a new
* .data section, and inserting an empty .bss immediately afterwards.
*
*/
void
unexec (new_name, old_name, data_start, bss_start, entry_address)
char *new_name, *old_name;
unsigned data_start, bss_start, entry_address;
{
unsigned int bss_end; /* (G. Attardi) */
int new_file, old_file, new_file_size;
/* Pointers to the base of the image of the two files. */
caddr_t old_base, new_base;
/* Pointers to the file, program and section headers for the old and new
files. */
Elf32_Ehdr *old_file_h, *new_file_h;
Elf32_Phdr *old_program_h, *new_program_h;
Elf32_Shdr *old_section_h, *new_section_h;
/* Point to the section name table in the old file. */
char *old_section_names;
Elf32_Addr old_bss_addr, new_bss_addr;
Elf32_Word old_bss_size, new_data2_size;
Elf32_Off new_data2_offset;
Elf32_Addr new_data2_addr;
int n, nn, old_bss_index, old_data_index, new_data2_index;
int old_mdebug_index;
struct stat stat_buf;
/* Open the old file & map it into the address space. */
old_file = open (old_name, O_RDONLY);
if (old_file < 0)
fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
if (fstat (old_file, &stat_buf) == -1)
fatal ("Can't fstat(%s): errno %d\n", old_name, errno);
old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
if (old_base == (caddr_t) -1)
fatal ("Can't mmap(%s): errno %d\n", old_name, errno);
#ifdef DEBUG
fprintf (stderr, "mmap(%s, %x) -> %x\n", old_name, stat_buf.st_size,
old_base);
#endif
/* Get pointers to headers & section names. */
old_file_h = (Elf32_Ehdr *) old_base;
old_program_h = (Elf32_Phdr *) ((byte *) old_base + old_file_h->e_phoff);
old_section_h = (Elf32_Shdr *) ((byte *) old_base + old_file_h->e_shoff);
old_section_names
= (char *) old_base + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
/* Find the mdebug section, if any. */
for (old_mdebug_index = 1; old_mdebug_index < old_file_h->e_shnum; old_mdebug_index++)
{
#ifdef DEBUG
fprintf (stderr, "Looking for .mdebug - found %s\n",
old_section_names + OLD_SECTION_H(old_mdebug_index).sh_name);
#endif
if (!strcmp (old_section_names + OLD_SECTION_H(old_mdebug_index).sh_name,
".mdebug"))
break;
}
if (old_mdebug_index == old_file_h->e_shnum)
old_mdebug_index = -1; /* just means no such section was present */
/* Find the old .bss section. Figure out parameters of the new
data2 and bss sections. */
for (old_bss_index = 1; old_bss_index < old_file_h->e_shnum; old_bss_index++)
{
#ifdef DEBUG
fprintf (stderr, "Looking for .bss - found %s\n",
old_section_names + OLD_SECTION_H(old_bss_index).sh_name);
#endif
if (!strcmp (old_section_names + OLD_SECTION_H(old_bss_index).sh_name,
".bss"))
break;
}
if (old_bss_index == old_file_h->e_shnum)
fatal ("Can't find .bss in %s.\n", old_name, 0);
old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
#if defined(emacs) || !defined(DEBUG)
bss_end = (unsigned int) sbrk (0);
new_bss_addr = (Elf32_Addr) bss_end;
#else
new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
#endif
new_data2_addr = old_bss_addr;
new_data2_size = new_bss_addr - old_bss_addr;
new_data2_offset = OLD_SECTION_H (old_bss_index).sh_offset;
#ifdef DEBUG
fprintf (stderr, "old_bss_index %d\n", old_bss_index);
fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
fprintf (stderr, "old_bss_size %x\n", old_bss_size);
fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
fprintf (stderr, "new_data2_size %x\n", new_data2_size);
fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
#endif
if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
fatal (".bss shrank when undumping???\n", 0, 0);
/* Set the output file to the right size and mmap it. Set
pointers to various interesting objects. stat_buf still has
old_file data. */
new_file = open (new_name, O_RDWR | O_CREAT, 0666);
if (new_file < 0)
fatal ("Can't creat (%s): errno %d\n", new_name, errno);
new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size;
if (ftruncate (new_file, new_file_size))
fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
new_file, 0);
if (new_base == (caddr_t) -1)
fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
new_file_h = (Elf32_Ehdr *) new_base;
new_program_h = (Elf32_Phdr *) ((byte *) new_base + old_file_h->e_phoff);
new_section_h
= (Elf32_Shdr *) ((byte *) new_base + old_file_h->e_shoff
+ new_data2_size);
/* Make our new file, program and section headers as copies of the
originals. */
memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
memcpy (new_program_h, old_program_h,
old_file_h->e_phnum * old_file_h->e_phentsize);
/* Modify the e_shstrndx if necessary. */
PATCH_INDEX (new_file_h->e_shstrndx);
/* Fix up file header. We'll add one section. Section header is
further away now. */
new_file_h->e_shoff += new_data2_size;
new_file_h->e_shnum += 1;
#ifdef DEBUG
fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
#endif
/* Fix up a new program header. Extend the writable data segment so
that the bss area is covered too. Find that segment by looking
for a segment that ends just before the .bss area. Make sure
that no segments are above the new .data2. Put a loop at the end
to adjust the offset and address of any segment that is above
data2, just in case we decide to allow this later. */
for (n = new_file_h->e_phnum - 1; n >= 0; n--)
{
/* Compute maximum of all requirements for alignment of section. */
int alignment = (NEW_PROGRAM_H (n)).p_align;
if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
/* Supposedly this condition is okay for the SGI. */
#if 0
if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr)
fatal ("Program segment above .bss in %s\n", old_name, 0);
#endif
if (NEW_PROGRAM_H (n).p_type == PT_LOAD
&& (round_up ((NEW_PROGRAM_H (n)).p_vaddr
+ (NEW_PROGRAM_H (n)).p_filesz,
alignment)
== round_up (old_bss_addr, alignment)))
break;
}
if (n < 0)
fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
NEW_PROGRAM_H (n).p_filesz += new_data2_size;
NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
#if 1 /* Maybe allow section after data2 - does this ever happen? */
for (n = new_file_h->e_phnum - 1; n >= 0; n--)
{
if (NEW_PROGRAM_H (n).p_vaddr
&& NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
NEW_PROGRAM_H (n).p_vaddr += new_data2_size - old_bss_size;
if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
NEW_PROGRAM_H (n).p_offset += new_data2_size;
}
#endif
/* Fix up section headers based on new .data2 section. Any section
whose offset or virtual address is after the new .data2 section
gets its value adjusted. .bss size becomes zero and new address
is set. data2 section header gets added by copying the existing
.data header and modifying the offset, address and size. */
for (old_data_index = 1; old_data_index < old_file_h->e_shnum;
old_data_index++)
if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
".data"))
break;
if (old_data_index == old_file_h->e_shnum)
fatal ("Can't find .data in %s.\n", old_name, 0);
/* Walk through all section headers, insert the new data2 section right
before the new bss section. */
for (n = 1, nn = 1; n < old_file_h->e_shnum; n++, nn++)
{
caddr_t src;
/* If it is bss section, insert the new data2 section before it. */
if (n == old_bss_index)
{
/* Steal the data section header for this data2 section. */
memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
new_file_h->e_shentsize);
NEW_SECTION_H (nn).sh_addr = new_data2_addr;
NEW_SECTION_H (nn).sh_offset = new_data2_offset;
NEW_SECTION_H (nn).sh_size = new_data2_size;
/* Use the bss section's alignment. This will assure that the
new data2 section always be placed in the same spot as the old
bss section by any other application. */
NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
/* Now copy over what we have in the memory now. */
memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
(caddr_t) OLD_SECTION_H (n).sh_addr,
new_data2_size);
nn++;
}
memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
old_file_h->e_shentsize);
/* The new bss section's size is zero, and its file offset and virtual
address should be off by NEW_DATA2_SIZE. */
if (n == old_bss_index)
{
/* NN should be `old_bss_index + 1' at this point. */
NEW_SECTION_H (nn).sh_offset += new_data2_size;
NEW_SECTION_H (nn).sh_addr += new_data2_size;
/* Let the new bss section address alignment be the same as the
section address alignment followed the old bss section, so
this section will be placed in exactly the same place. */
NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
NEW_SECTION_H (nn).sh_size = 0;
}
/* Any section that was original placed AFTER the bss section should now
be off by NEW_DATA2_SIZE. */
else if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
NEW_SECTION_H (nn).sh_offset += new_data2_size;
/* If any section hdr refers to the section after the new .data
section, make it refer to next one because we have inserted
a new section in between. */
PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
/* For symbol tables, info is a symbol table index,
so don't change it. */
if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
&& NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
/* Now, start to copy the content of sections. */
if (NEW_SECTION_H (nn).sh_type == SHT_NULL
|| NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
continue;
/* Write out the sections. .data and .data1 (and data2, called
".data" in the strings table) get copied from the current process
instead of the old file. */
if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data")
|| !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
".data1"))
src = (caddr_t) OLD_SECTION_H (n).sh_addr;
else
src = old_base + OLD_SECTION_H (n).sh_offset;
memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
NEW_SECTION_H (nn).sh_size);
/* Adjust the HDRR offsets in .mdebug and copy the
line data if it's in its usual 'hole' in the object.
Makes the new file debuggable with dbx.
patches up two problems: the absolute file offsets
in the HDRR record of .mdebug (see /usr/include/syms.h), and
the ld bug that gets the line table in a hole in the
elf file rather than in the .mdebug section proper.
David Anderson. davea@sgi.com Jan 16,1994. */
if (n == old_mdebug_index)
{
#define MDEBUGADJUST(__ct,__fileaddr) \
if (n_phdrr->__ct > 0) \
{ \
n_phdrr->__fileaddr += movement; \
}
HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset);
HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset);
unsigned movement = new_data2_size;
MDEBUGADJUST (idnMax, cbDnOffset);
MDEBUGADJUST (ipdMax, cbPdOffset);
MDEBUGADJUST (isymMax, cbSymOffset);
MDEBUGADJUST (ioptMax, cbOptOffset);
MDEBUGADJUST (iauxMax, cbAuxOffset);
MDEBUGADJUST (issMax, cbSsOffset);
MDEBUGADJUST (issExtMax, cbSsExtOffset);
MDEBUGADJUST (ifdMax, cbFdOffset);
MDEBUGADJUST (crfd, cbRfdOffset);
MDEBUGADJUST (iextMax, cbExtOffset);
/* The Line Section, being possible off in a hole of the object,
requires special handling. */
if (n_phdrr->cbLine > 0)
{
if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset
+ OLD_SECTION_H (n).sh_size))
{
/* line data is in a hole in elf. do special copy and adjust
for this ld mistake.
*/
n_phdrr->cbLineOffset += movement;
memcpy (n_phdrr->cbLineOffset + new_base,
o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine);
}
else
{
/* somehow line data is in .mdebug as it is supposed to be. */
MDEBUGADJUST (cbLine, cbLineOffset);
}
}
}
/* If it is the symbol table, its st_shndx field needs to be patched. */
if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
|| NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
{
Elf32_Shdr *spt = &NEW_SECTION_H (nn);
unsigned int num = spt->sh_size / spt->sh_entsize;
Elf32_Sym * sym = (Elf32_Sym *) (NEW_SECTION_H (nn).sh_offset
+ new_base);
for (; num--; sym++)
{
if (sym->st_shndx == SHN_UNDEF
|| sym->st_shndx == SHN_ABS
|| sym->st_shndx == SHN_COMMON)
continue;
PATCH_INDEX (sym->st_shndx);
}
}
}
/* Close the files and make the new file executable. */
if (close (old_file))
fatal ("Can't close (%s): errno %d\n", old_name, errno);
if (close (new_file))
fatal ("Can't close (%s): errno %d\n", new_name, errno);
if (stat (new_name, &stat_buf) == -1)
fatal ("Can't stat (%s): errno %d\n", new_name, errno);
n = umask (777);
umask (n);
stat_buf.st_mode |= 0111 & ~n;
if (chmod (new_name, stat_buf.st_mode) == -1)
fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
}

View file

@ -1,16 +0,0 @@
/* Unexec for the Alliant FX/2800. */
#include <stdio.h>
unexec (new_name, a_name, data_start, bss_start, entry_address)
char *new_name, *a_name;
unsigned data_start, bss_start, entry_address;
{
int stat;
stat = elf_write_modified_data (a_name, new_name);
if (stat < 0)
perror ("emacs: elf_write_modified_data");
else if (stat > 0)
fprintf (stderr, "Unspecified error from elf_write_modified_data.\n");
}

View file

@ -1,297 +0,0 @@
/* Unexec for HP 9000 Series 800 machines.
Bob Desinger <hpsemc!bd@hplabs.hp.com>
Note that the GNU project considers support for HP operation a
peripheral activity which should not be allowed to divert effort
from development of the GNU system. Changes in this code will be
installed when users send them in, but aside from that we don't
plan to think about it, or about whether other Emacs maintenance
might break it.
Unexec creates a copy of the old a.out file, and replaces the old data
area with the current data area. When the new file is executed, the
process will see the same data structures and data values that the
original process had when unexec was called.
Unlike other versions of unexec, this one copies symbol table and
debug information to the new a.out file. Thus, the new a.out file
may be debugged with symbolic debuggers.
If you fix any bugs in this, I'd like to incorporate your fixes.
Send them to uunet!hpda!hpsemc!jmorris or jmorris%hpsemc@hplabs.HP.COM.
CAVEATS:
This routine saves the current value of all static and external
variables. This means that any data structure that needs to be
initialized must be explicitly reset. Variables will not have their
expected default values.
Unfortunately, the HP-UX signal handler has internal initialization
flags which are not explicitly reset. Thus, for signals to work in
conjunction with this routine, the following code must executed when
the new process starts up.
void _sigreturn();
...
sigsetreturn(_sigreturn);
*/
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <a.out.h>
#define NBPG 2048
#define roundup(x,n) ( ( (x)+(n-1) ) & ~(n-1) ) /* n is power of 2 */
#define min(x,y) ( ((x)<(y))?(x):(y) )
/* Create a new a.out file, same as old but with current data space */
unexec(new_name, old_name, new_end_of_text, dummy1, dummy2)
char new_name[]; /* name of the new a.out file to be created */
char old_name[]; /* name of the old a.out file */
char *new_end_of_text; /* ptr to new edata/etext; NOT USED YET */
int dummy1, dummy2; /* not used by emacs */
{
int old, new;
int old_size, new_size;
struct header hdr;
struct som_exec_auxhdr auxhdr;
long i;
/* For the greatest flexibility, should create a temporary file in
the same directory as the new file. When everything is complete,
rename the temp file to the new name.
This way, a program could update its own a.out file even while
it is still executing. If problems occur, everything is still
intact. NOT implemented. */
/* Open the input and output a.out files */
old = open(old_name, O_RDONLY);
if (old < 0)
{ perror(old_name); exit(1); }
new = open(new_name, O_CREAT|O_RDWR|O_TRUNC, 0777);
if (new < 0)
{ perror(new_name); exit(1); }
/* Read the old headers */
read_header(old, &hdr, &auxhdr);
/* Decide how large the new and old data areas are */
old_size = auxhdr.exec_dsize;
/* I suspect these two statements are separate
to avoid a compiler bug in hpux version 8. */
i = sbrk (0);
new_size = i - auxhdr.exec_dmem;
/* Copy the old file to the new, up to the data space */
lseek(old, 0, 0);
copy_file(old, new, auxhdr.exec_dfile);
/* Skip the old data segment and write a new one */
lseek(old, old_size, 1);
save_data_space(new, &hdr, &auxhdr, new_size);
/* Copy the rest of the file */
copy_rest(old, new);
/* Update file pointers since we probably changed size of data area */
update_file_ptrs(new, &hdr, &auxhdr, auxhdr.exec_dfile, new_size-old_size);
/* Save the modified header */
write_header(new, &hdr, &auxhdr);
/* Close the binary file */
close(old);
close(new);
return 0;
}
/* Save current data space in the file, update header. */
save_data_space(file, hdr, auxhdr, size)
int file;
struct header *hdr;
struct som_exec_auxhdr *auxhdr;
int size;
{
/* Write the entire data space out to the file */
if (write(file, auxhdr->exec_dmem, size) != size)
{ perror("Can't save new data space"); exit(1); }
/* Update the header to reflect the new data size */
auxhdr->exec_dsize = size;
auxhdr->exec_bsize = 0;
}
/* Update the values of file pointers when something is inserted. */
update_file_ptrs(file, hdr, auxhdr, location, offset)
int file;
struct header *hdr;
struct som_exec_auxhdr *auxhdr;
unsigned int location;
int offset;
{
struct subspace_dictionary_record subspace;
int i;
/* Increase the overall size of the module */
hdr->som_length += offset;
/* Update the various file pointers in the header */
#define update(ptr) if (ptr > location) ptr = ptr + offset
update(hdr->aux_header_location);
update(hdr->space_strings_location);
update(hdr->init_array_location);
update(hdr->compiler_location);
update(hdr->symbol_location);
update(hdr->fixup_request_location);
update(hdr->symbol_strings_location);
update(hdr->unloadable_sp_location);
update(auxhdr->exec_tfile);
update(auxhdr->exec_dfile);
/* Do for each subspace dictionary entry */
lseek(file, hdr->subspace_location, 0);
for (i = 0; i < hdr->subspace_total; i++)
{
if (read(file, &subspace, sizeof(subspace)) != sizeof(subspace))
{ perror("Can't read subspace record"); exit(1); }
/* If subspace has a file location, update it */
if (subspace.initialization_length > 0
&& subspace.file_loc_init_value > location)
{
subspace.file_loc_init_value += offset;
lseek(file, -sizeof(subspace), 1);
if (write(file, &subspace, sizeof(subspace)) != sizeof(subspace))
{ perror("Can't update subspace record"); exit(1); }
}
}
/* Do for each initialization pointer record */
/* (I don't think it applies to executable files, only relocatables) */
#undef update
}
/* Read in the header records from an a.out file. */
read_header(file, hdr, auxhdr)
int file;
struct header *hdr;
struct som_exec_auxhdr *auxhdr;
{
/* Read the header in */
lseek(file, 0, 0);
if (read(file, hdr, sizeof(*hdr)) != sizeof(*hdr))
{ perror("Couldn't read header from a.out file"); exit(1); }
if (hdr->a_magic != EXEC_MAGIC && hdr->a_magic != SHARE_MAGIC
&& hdr->a_magic != DEMAND_MAGIC)
{
fprintf(stderr, "a.out file doesn't have legal magic number\n");
exit(1);
}
lseek(file, hdr->aux_header_location, 0);
if (read(file, auxhdr, sizeof(*auxhdr)) != sizeof(*auxhdr))
{
perror("Couldn't read auxiliary header from a.out file");
exit(1);
}
}
/* Write out the header records into an a.out file. */
write_header(file, hdr, auxhdr)
int file;
struct header *hdr;
struct som_exec_auxhdr *auxhdr;
{
/* Update the checksum */
hdr->checksum = calculate_checksum(hdr);
/* Write the header back into the a.out file */
lseek(file, 0, 0);
if (write(file, hdr, sizeof(*hdr)) != sizeof(*hdr))
{ perror("Couldn't write header to a.out file"); exit(1); }
lseek(file, hdr->aux_header_location, 0);
if (write(file, auxhdr, sizeof(*auxhdr)) != sizeof(*auxhdr))
{ perror("Couldn't write auxiliary header to a.out file"); exit(1); }
}
/* Calculate the checksum of a SOM header record. */
calculate_checksum(hdr)
struct header *hdr;
{
int checksum, i, *ptr;
checksum = 0; ptr = (int *) hdr;
for (i=0; i<sizeof(*hdr)/sizeof(int)-1; i++)
checksum ^= ptr[i];
return(checksum);
}
/* Copy size bytes from the old file to the new one. */
copy_file(old, new, size)
int new, old;
int size;
{
int len;
int buffer[8196]; /* word aligned will be faster */
for (; size > 0; size -= len)
{
len = min(size, sizeof(buffer));
if (read(old, buffer, len) != len)
{ perror("Read failure on a.out file"); exit(1); }
if (write(new, buffer, len) != len)
{ perror("Write failure in a.out file"); exit(1); }
}
}
/* Copy the rest of the file, up to EOF. */
copy_rest(old, new)
int new, old;
{
int buffer[4096];
int len;
/* Copy bytes until end of file or error */
while ( (len = read(old, buffer, sizeof(buffer))) > 0)
if (write(new, buffer, len) != len) break;
if (len != 0)
{ perror("Unable to copy the rest of the file"); exit(1); }
}
#ifdef DEBUG
display_header(hdr, auxhdr)
struct header *hdr;
struct som_exec_auxhdr *auxhdr;
{
/* Display the header information (debug) */
printf("\n\nFILE HEADER\n");
printf("magic number %d \n", hdr->a_magic);
printf("text loc %.8x size %d \n", auxhdr->exec_tmem, auxhdr->exec_tsize);
printf("data loc %.8x size %d \n", auxhdr->exec_dmem, auxhdr->exec_dsize);
printf("entry %x \n", auxhdr->exec_entry);
printf("Bss segment size %u\n", auxhdr->exec_bsize);
printf("\n");
printf("data file loc %d size %d\n",
auxhdr->exec_dfile, auxhdr->exec_dsize);
printf("som_length %d\n", hdr->som_length);
printf("unloadable sploc %d size %d\n",
hdr->unloadable_sp_location, hdr->unloadable_sp_size);
}
#endif /* DEBUG */

View file

@ -1,319 +0,0 @@
/* Unexec for MIPS (including IRIS4D).
Note that the GNU project considers support for MIPS operation
a peripheral activity which should not be allowed to divert effort
from development of the GNU system. Changes in this code will be
installed when users send them in, but aside from that
we don't plan to think about it, or about whether other Emacs
maintenance might break it.
Copyright (C) 1988 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Modified by G. Attardi (attardi@di.unipi.it), Jan. 1994
for using <stdarg.h> instead of <vararg.h> */
#include <config.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <stdio.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <sym.h>
#if defined (IRIS_4D) || defined (sony)
#include "getpagesize.h"
#include <fcntl.h>
#endif
#define TEXT_START 0x400000
static void fatal_unexec (char *, ...);
static void mark_x ();
#define READ(_fd, _buffer, _size, _error_message, _error_arg) \
errno = EEOF; \
if (read (_fd, _buffer, _size) != _size) \
fatal_unexec (_error_message, _error_arg);
#define WRITE(_fd, _buffer, _size, _error_message, _error_arg) \
if (write (_fd, _buffer, _size) != _size) \
fatal_unexec (_error_message, _error_arg);
#define SEEK(_fd, _position, _error_message, _error_arg) \
errno = EEOF; \
if (lseek (_fd, _position, L_SET) != _position) \
fatal_unexec (_error_message, _error_arg);
extern int errno;
extern int sys_nerr;
extern char *sys_errlist[];
#define EEOF -1
static struct scnhdr *text_section;
static struct scnhdr *init_section;
static struct scnhdr *finit_section;
static struct scnhdr *rdata_section;
static struct scnhdr *data_section;
static struct scnhdr *lit8_section;
static struct scnhdr *lit4_section;
static struct scnhdr *sdata_section;
static struct scnhdr *sbss_section;
static struct scnhdr *bss_section;
struct headers {
struct filehdr fhdr;
struct aouthdr aout;
struct scnhdr section[10];
};
/* Define name of label for entry point for the dumped executable. */
#ifndef DEFAULT_ENTRY_ADDRESS
#define DEFAULT_ENTRY_ADDRESS __start
#endif
unexec (new_name, a_name, data_start, bss_start, entry_address)
char *new_name, *a_name;
unsigned data_start, bss_start, entry_address;
{
int new, old;
int pagesize, brk;
int newsyms, symrel;
int nread;
struct headers hdr;
int i;
int vaddr, scnptr;
#define BUFSIZE 8192
char buffer[BUFSIZE];
old = open (a_name, O_RDONLY, 0);
if (old < 0) fatal_unexec ("opening %s", a_name);
new = creat (new_name, 0666);
if (new < 0) fatal_unexec ("creating %s", new_name);
hdr = *((struct headers *)TEXT_START);
#ifdef MIPS2
if (hdr.fhdr.f_magic != MIPSELMAGIC
&& hdr.fhdr.f_magic != MIPSEBMAGIC
&& hdr.fhdr.f_magic != (MIPSELMAGIC | 1)
&& hdr.fhdr.f_magic != (MIPSEBMAGIC | 1))
{
fprintf (stderr,
"unexec: input file magic number is %x, not %x, %x, %x or %x.\n",
hdr.fhdr.f_magic,
MIPSELMAGIC, MIPSEBMAGIC,
MIPSELMAGIC | 1, MIPSEBMAGIC | 1);
exit(1);
}
#else /* not MIPS2 */
if (hdr.fhdr.f_magic != MIPSELMAGIC
&& hdr.fhdr.f_magic != MIPSEBMAGIC)
{
fprintf (stderr, "unexec: input file magic number is %x, not %x or %x.\n",
hdr.fhdr.f_magic, MIPSELMAGIC, MIPSEBMAGIC);
exit (1);
}
#endif /* not MIPS2 */
if (hdr.fhdr.f_opthdr != sizeof (hdr.aout))
{
fprintf (stderr, "unexec: input a.out header is %d bytes, not %d.\n",
hdr.fhdr.f_opthdr, sizeof (hdr.aout));
exit (1);
}
if (hdr.aout.magic != ZMAGIC)
{
fprintf (stderr, "unexec: input file a.out magic number is %o, not %o.\n",
hdr.aout.magic, ZMAGIC);
exit (1);
}
#define CHECK_SCNHDR(ptr, name, flags) \
ptr = NULL; \
for (i = 0; i < hdr.fhdr.f_nscns && !ptr; i++) \
if (strcmp (hdr.section[i].s_name, name) == 0) \
{ \
if (hdr.section[i].s_flags != flags) \
fprintf (stderr, "unexec: %x flags (%x expected) in %s section.\n", \
hdr.section[i].s_flags, flags, name); \
ptr = hdr.section + i; \
} \
CHECK_SCNHDR (text_section, _TEXT, STYP_TEXT);
CHECK_SCNHDR (init_section, _INIT, STYP_INIT);
CHECK_SCNHDR (rdata_section, _RDATA, STYP_RDATA);
CHECK_SCNHDR (data_section, _DATA, STYP_DATA);
#ifdef _LIT8
CHECK_SCNHDR (lit8_section, _LIT8, STYP_LIT8);
CHECK_SCNHDR (lit4_section, _LIT4, STYP_LIT4);
#endif /* _LIT8 */
CHECK_SCNHDR (sdata_section, _SDATA, STYP_SDATA);
CHECK_SCNHDR (sbss_section, _SBSS, STYP_SBSS);
CHECK_SCNHDR (bss_section, _BSS, STYP_BSS);
#if 0 /* Apparently this error check goes off on irix 3.3,
but it doesn't indicate a real problem. */
if (i != hdr.fhdr.f_nscns)
fprintf (stderr, "unexec: %d sections found instead of %d.\n",
i, hdr.fhdr.f_nscns);
#endif
text_section->s_scnptr = 0;
pagesize = getpagesize ();
brk = (sbrk (0) + pagesize - 1) & (-pagesize);
hdr.aout.dsize = brk - DATA_START;
hdr.aout.bsize = 0;
if (entry_address == 0)
{
extern DEFAULT_ENTRY_ADDRESS ();
hdr.aout.entry = (unsigned)DEFAULT_ENTRY_ADDRESS;
}
else
hdr.aout.entry = entry_address;
hdr.aout.bss_start = hdr.aout.data_start + hdr.aout.dsize;
rdata_section->s_size = data_start - DATA_START;
/* Adjust start and virtual addresses of rdata_section, too. */
rdata_section->s_vaddr = DATA_START;
rdata_section->s_paddr = DATA_START;
rdata_section->s_scnptr = text_section->s_scnptr + hdr.aout.tsize;
data_section->s_vaddr = data_start;
data_section->s_paddr = data_start;
data_section->s_size = brk - data_start;
data_section->s_scnptr = rdata_section->s_scnptr + rdata_section->s_size;
vaddr = data_section->s_vaddr + data_section->s_size;
scnptr = data_section->s_scnptr + data_section->s_size;
if (lit8_section != NULL)
{
lit8_section->s_vaddr = vaddr;
lit8_section->s_paddr = vaddr;
lit8_section->s_size = 0;
lit8_section->s_scnptr = scnptr;
}
if (lit4_section != NULL)
{
lit4_section->s_vaddr = vaddr;
lit4_section->s_paddr = vaddr;
lit4_section->s_size = 0;
lit4_section->s_scnptr = scnptr;
}
if (sdata_section != NULL)
{
sdata_section->s_vaddr = vaddr;
sdata_section->s_paddr = vaddr;
sdata_section->s_size = 0;
sdata_section->s_scnptr = scnptr;
}
if (sbss_section != NULL)
{
sbss_section->s_vaddr = vaddr;
sbss_section->s_paddr = vaddr;
sbss_section->s_size = 0;
sbss_section->s_scnptr = scnptr;
}
if (bss_section != NULL)
{
bss_section->s_vaddr = vaddr;
bss_section->s_paddr = vaddr;
bss_section->s_size = 0;
bss_section->s_scnptr = scnptr;
}
WRITE (new, TEXT_START, hdr.aout.tsize,
"writing text section to %s", new_name);
WRITE (new, DATA_START, hdr.aout.dsize,
"writing data section to %s", new_name);
SEEK (old, hdr.fhdr.f_symptr, "seeking to start of symbols in %s", a_name);
errno = EEOF;
nread = read (old, buffer, BUFSIZE);
if (nread < sizeof (HDRR)) fatal_unexec ("reading symbols from %s", a_name);
#define symhdr ((pHDRR)buffer)
newsyms = hdr.aout.tsize + hdr.aout.dsize;
symrel = newsyms - hdr.fhdr.f_symptr;
hdr.fhdr.f_symptr = newsyms;
symhdr->cbLineOffset += symrel;
symhdr->cbDnOffset += symrel;
symhdr->cbPdOffset += symrel;
symhdr->cbSymOffset += symrel;
symhdr->cbOptOffset += symrel;
symhdr->cbAuxOffset += symrel;
symhdr->cbSsOffset += symrel;
symhdr->cbSsExtOffset += symrel;
symhdr->cbFdOffset += symrel;
symhdr->cbRfdOffset += symrel;
symhdr->cbExtOffset += symrel;
#undef symhdr
do
{
if (write (new, buffer, nread) != nread)
fatal_unexec ("writing symbols to %s", new_name);
nread = read (old, buffer, BUFSIZE);
if (nread < 0) fatal_unexec ("reading symbols from %s", a_name);
#undef BUFSIZE
} while (nread != 0);
SEEK (new, 0, "seeking to start of header in %s", new_name);
WRITE (new, &hdr, sizeof (hdr),
"writing header of %s", new_name);
close (old);
close (new);
mark_x (new_name);
}
/*
* mark_x
*
* After successfully building the new a.out, mark it executable
*/
static void
mark_x (name)
char *name;
{
struct stat sbuf;
int um = umask (777);
umask (um);
if (stat (name, &sbuf) < 0)
fatal_unexec ("getting protection on %s", name);
sbuf.st_mode |= 0111 & ~um;
if (chmod (name, sbuf.st_mode) < 0)
fatal_unexec ("setting protection on %s", name);
}
static void
fatal_unexec (char *s, ...)
{
va_list ap;
if (errno == EEOF)
fputs ("unexec: unexpected end of file, ", stderr);
else if (errno < sys_nerr)
fprintf (stderr, "unexec: %s, ", sys_errlist[errno]);
else
fprintf (stderr, "unexec: error code %d, ", errno);
va_start (ap, s);
_doprnt (s, ap, stderr);
fputs (".\n", stderr);
exit (1);
}

View file

@ -1,468 +0,0 @@
/*
* unexec for the NeXT Mach environment.
*
* Bradley Taylor (btaylor@NeXT.COM)
* February 28, 1990
*
* Modified by Noritake Yonezawa (yonezawa@cs.uiuc.edu)
* July 28, 1991
*
* Modified by Noritake Yonezawa (yone@vcdew25.lsi.tmg.nec.CO.JP)
* February 16, 1992
*/
#undef __STRICT_BSD__
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <mach.h>
#include <sys/loader.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <libc.h>
#define CEIL(x,quantum) ((((int)(x))+(quantum)-1)&~((quantum)-1))
int malloc_cookie;
#ifndef BIG_HEAP_SIZE
#define BIG_HEAP_SIZE 0x1000000
#endif
int big_heap = BIG_HEAP_SIZE;
char *mach_maplimit = 0;
char *mach_brkpt = 0;
typedef struct region_t {
vm_address_t address;
vm_size_t size;
vm_prot_t protection;
vm_prot_t max_protection;
vm_inherit_t inheritance;
boolean_t shared;
port_t object_name;
vm_offset_t offset;
} region_t;
char *
my_sbrk(int incr)
{
char *temp, *ptr;
kern_return_t rtn;
if (mach_brkpt == 0) {
if ((rtn = vm_allocate(task_self(), (vm_address_t *) & mach_brkpt,
big_heap, 1)) != KERN_SUCCESS) {
mach_error("my_sbrk(): vm_allocate() failed", rtn);
return ((char *)-1);
}
mach_maplimit = mach_brkpt + big_heap;
}
if (incr == 0) {
return (mach_brkpt);
} else {
ptr = mach_brkpt + incr;
if (ptr <= mach_maplimit) {
temp = mach_brkpt;
mach_brkpt = ptr;
return (temp);
} else {
fprintf(stderr, "my_sbrk(): no more memory\n");
fflush(stderr);
return ((char *)-1);
}
}
}
static void
grow(
struct load_command ***the_commands,
unsigned *the_commands_len
)
{
if (*the_commands == NULL) {
*the_commands_len = 1;
*the_commands = malloc(sizeof(*the_commands));
} else {
(*the_commands_len)++;
*the_commands = realloc(*the_commands,
(*the_commands_len *
sizeof(**the_commands)));
}
}
static void
save_command(
struct load_command *command,
struct load_command ***the_commands,
unsigned *the_commands_len
)
{
struct load_command **tmp;
grow(the_commands, the_commands_len);
tmp = &(*the_commands)[*the_commands_len - 1];
*tmp = malloc(command->cmdsize);
bcopy(command, *tmp, command->cmdsize);
}
static void
fatal_unexec(char *format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "unexec: ");
vfprintf(stderr, format, ap);
fprintf(stderr, "\n");
va_end(ap);
}
static int
read_macho(
int fd,
struct mach_header *the_header,
struct load_command ***the_commands,
unsigned *the_commands_len
)
{
struct load_command command;
struct load_command *buf;
int i;
int size;
if (read(fd, the_header, sizeof(*the_header)) != sizeof(*the_header)) {
fatal_unexec("cannot read macho header");
return (0);
}
for (i = 0; i < the_header->ncmds; i++) {
if (read(fd, &command, sizeof(struct load_command)) !=
sizeof(struct load_command)) {
fatal_unexec("cannot read macho load command header");
return (0);
}
size = command.cmdsize - sizeof(struct load_command);
if (size < 0) {
fatal_unexec("bogus load command size");
return (0);
}
buf = malloc(command.cmdsize);
buf->cmd = command.cmd;
buf->cmdsize = command.cmdsize;
if (read(fd, ((char *)buf +
sizeof(struct load_command)),
size) != size) {
fatal_unexec("cannot read load command data");
return (0);
}
save_command(buf, the_commands, the_commands_len);
}
return (1);
}
static int
filldatagap(
vm_address_t start_address,
vm_size_t *size,
vm_address_t end_address
)
{
vm_address_t address;
vm_size_t gapsize;
address = (start_address + *size);
gapsize = end_address - address;
*size += gapsize;
if (vm_allocate(task_self(), &address, gapsize,
FALSE) != KERN_SUCCESS) {
fatal_unexec("cannot vm_allocate");
return (0);
}
return (1);
}
static int
get_data_region(
vm_address_t *address,
vm_size_t *size
)
{
region_t region;
kern_return_t ret;
struct section *sect;
sect = (struct section *) getsectbyname(SEG_DATA, SECT_DATA);
region.address = 0;
*address = 0;
for (;;) {
ret = vm_region(task_self(),
&region.address,
&region.size,
&region.protection,
&region.max_protection,
&region.inheritance,
&region.shared,
&region.object_name,
&region.offset);
if (ret != KERN_SUCCESS || region.address >= mach_maplimit) {
break;
}
if (*address != 0) {
if (region.address > *address + *size) {
if (!filldatagap(*address, size,
region.address)) {
return (0);
}
}
*size += region.size;
} else {
if (region.address == sect->addr) {
*address = region.address;
*size = region.size;
}
}
region.address += region.size;
}
return (1);
}
static char *
my_malloc(
vm_size_t size
)
{
vm_address_t address;
if (vm_allocate(task_self(), &address, size, TRUE) != KERN_SUCCESS) {
return (NULL);
}
return ((char *)address);
}
static void
my_free(
char *buf,
vm_size_t size
)
{
vm_deallocate(task_self(), (vm_address_t)buf, size);
}
static int
unexec_doit(
int infd,
int outfd
)
{
int i;
struct load_command **the_commands = NULL;
unsigned the_commands_len;
struct mach_header the_header;
int fgrowth;
int fdatastart;
int fdatasize;
int size;
int seg;
struct stat st;
char *buf;
vm_address_t data_address;
vm_size_t data_size, bss_size;
struct segment_command *segment;
struct section *section;
if (!read_macho(infd, &the_header, &the_commands, &the_commands_len)) {
return (0);
}
if (!get_data_region(&data_address, &data_size)) {
return (0);
}
/*
* DO NOT USE MALLOC IN THIS SECTION
*/
{
/*
* Fix offsets
*/
for (i = 0; i < the_commands_len; i++) {
switch (the_commands[i]->cmd) {
case LC_SEGMENT:
segment = ((struct segment_command *)
the_commands[i]);
if (strcmp(segment->segname, SEG_DATA) == 0) {
data_size = CEIL(mach_brkpt - data_address, getpagesize());
bss_size = mach_maplimit - mach_brkpt;
fdatastart = segment->fileoff;
fdatasize = segment->filesize;
fgrowth = (data_size -
segment->filesize);
segment->vmsize = data_size + bss_size;
segment->filesize = data_size;
section = (struct section *) ((char *) (segment + 1));
for (seg = 0; seg < segment->nsects; ++seg, ++section) {
if (strcmp(section->sectname, SECT_DATA) == 0) {
section->size = data_size;
}
else if (strcmp(section->sectname, SECT_BSS) == 0) {
section->addr = data_address + data_size;
section->size = bss_size;
section->flags = S_ZEROFILL;
}
else if (strcmp(section->sectname, SECT_COMMON) == 0) {
section->addr = data_address + data_size + bss_size;
}
}
}
if (strcmp(segment->segname, SEG_LINKEDIT) == 0) {
segment->vmaddr += CEIL(fgrowth + bss_size, getpagesize());
segment->fileoff += fgrowth;
}
break;
case LC_SYMTAB:
((struct symtab_command *)
the_commands[i])->symoff += fgrowth;
((struct symtab_command *)
the_commands[i])->stroff += fgrowth;
break;
case LC_SYMSEG:
((struct symseg_command *)
the_commands[i])->offset += fgrowth;
break;
default:
break;
}
}
/*
* Write header
*/
if (write(outfd, &the_header,
sizeof(the_header)) != sizeof(the_header)) {
fatal_unexec("cannot write header");
return (0);
}
/*
* Write commands
*/
for (i = 0; i < the_commands_len; i++) {
if (write(outfd, the_commands[i],
the_commands[i]->cmdsize) !=
the_commands[i]->cmdsize) {
fatal_unexec("cannot write commands");
return (0);
}
}
/*
* Write original text
*/
if (lseek(infd, the_header.sizeofcmds + sizeof(the_header),
L_SET) < 0) {
fatal_unexec("cannot seek input file");
return (0);
}
size = fdatastart - (sizeof(the_header) +
the_header.sizeofcmds);
buf = my_malloc(size);
if (read(infd, buf, size) != size) {
my_free(buf, size);
fatal_unexec("cannot read input file");
}
if (write(outfd, buf, size) != size) {
my_free(buf, size);
fatal_unexec("cannot write original text");
return (0);
}
my_free(buf, size);
/*
* Write new data
*/
if (write(outfd, (char *)data_address,
data_size) != data_size) {
fatal_unexec("cannot write new data");
return (0);
}
}
/*
* OKAY TO USE MALLOC NOW
*/
/*
* Write rest of file
*/
fstat(infd, &st);
if (lseek(infd, fdatasize, L_INCR) < 0) {
fatal_unexec("cannot seek input file");
return (0);
}
size = st.st_size - lseek(infd, 0, L_INCR);
buf = malloc(size);
if (read(infd, buf, size) != size) {
free(buf);
fatal_unexec("cannot read input file");
return (0);
}
if (write(outfd, buf, size) != size) {
free(buf);
fatal_unexec("cannot write reset of file");
return (0);
}
free(buf);
return (1);
}
void
unexec(
char *outfile,
char *infile
)
{
int infd;
int outfd;
char tmpbuf[L_tmpnam];
char *tmpfile;
infd = open(infile, O_RDONLY, 0);
if (infd < 0) {
fatal_unexec("cannot open input file `%s'", infile);
exit(1);
}
tmpnam(tmpbuf);
tmpfile = rindex(tmpbuf, '/');
if (tmpfile == NULL) {
tmpfile = tmpbuf;
} else {
tmpfile++;
}
outfd = open(tmpfile, O_WRONLY|O_TRUNC|O_CREAT, 0755);
if (outfd < 0) {
close(infd);
fatal_unexec("cannot open tmp file `%s'", tmpfile);
exit(1);
}
if (!unexec_doit(infd, outfd)) {
close(infd);
close(outfd);
unlink(tmpfile);
exit(1);
}
close(infd);
close(outfd);
if (rename(tmpfile, outfile) < 0) {
unlink(tmpfile);
fatal_unexec("cannot rename `%s' to `%s'", tmpfile, outfile);
exit(1);
}
}

View file

@ -1,279 +0,0 @@
/* Contributed by Viktor Dukhovni. */
/*
* Unexec for Berkeley a.out format + SUNOS shared libraries
* The unexeced executable contains the __DYNAMIC area from the
* original text file, and then the rest of data + bss + malloced area of
* the current process. (The __DYNAMIC area is at the top of the process
* data segment, we use "data_start" defined externally to mark the start
* of the "real" data segment.)
*
* For programs that want to remap some of the data segment read only
* a run_time_remap is provided. This attempts to remap largest area starting
* and ending on page boundaries between "data_start" and "bndry"
* For this it to figure out where the text file is located. A path search
* is attempted after trying argv[0] and if all fails we simply do not remap
*
* One feature of run_time_remap () is mandatory: reseting the break.
*
* Note that we can no longer map data into the text segment, as this causes
* the __DYNAMIC struct to become read only, breaking the runtime loader.
* Thus we no longer need to mess with a private crt0.c, the standard one
* will do just fine, since environ can live in the writable area between
* __DYNAMIC and data_start, just make sure that pre-crt0.o (the name
* is somewhat abused here) is loaded first!
*
*/
#ifdef emacs
#include <config.h>
#endif
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <string.h>
#include <stdio.h>
#include <a.out.h>
/*
* for programs other than emacs
* define data_start + initialized here, and make sure
* this object is loaded first!
* emacs will define these elsewhere, and load the object containing
* data_start (pre-crt0.o or firstfile.o?) first!
* The custom crt0.o *must not* be loaded!
*/
#ifndef emacs
static int data_start = 0;
static int initialized = 0;
#else
extern int initialized;
extern unsigned data_start;
extern int pureptr;
#endif
extern char *getenv ();
static unsigned Brk;
static struct exec nhdr;
static int rd_only_len;
static long cookie;
unexec (new_name, a_name, bndry, bss_start, entry)
char *new_name, *a_name;
unsigned bndry, bss_start, entry;
{
char buf[PAGSIZ];
int fd, new;
char *old;
struct exec ohdr; /* Allocate on the stack, not needed in the next life */
struct stat stat;
#ifdef emacs
fprintf (stderr, "Used %d bytes of Pure Storage\n", pureptr);
#endif
if ((fd = open (a_name, O_RDONLY)) < 0)
{
fprintf (stderr, "%s: open: ", a_name);
perror (a_name);
exit (1);
}
if ((new = open (new_name, O_WRONLY | O_CREAT, 0666)) == -1)
{
fprintf (stderr, "%s: open: ", a_name);
perror (new_name);
exit (1);
}
if ((fstat (fd, &stat) == -1))
{
fprintf (stderr, "%s: ", a_name);
perror ("fstat");
exit (1);
}
old = (char *)mmap (0, stat.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (old == (char *)-1)
{
fprintf (stderr, "%s: ", a_name);
perror ("mmap");
exit (1);
}
close (fd);
nhdr = ohdr = (*(struct exec *)old);
/*
* Remember a magic cookie so we know we've got the right binary
* when remapping.
*/
cookie = time (0);
Brk = sbrk (0); /* Save the break, it is reset to &_end (by ld.so?) */
/*
* Round up data start to a page boundary (Lose if not a 2 power!)
*/
data_start = ((((int)&data_start) - 1) & ~(N_PAGSIZ (nhdr) - 1)) + N_PAGSIZ (nhdr);
/*
* Round down read only pages to a multiple of the page size
*/
if (bndry)
rd_only_len = ((int)bndry & ~(N_PAGSIZ (nhdr) - 1)) - data_start;
#ifndef emacs
/* Have to do this some time before dumping the data */
initialized = 1;
#endif
/*
* Handle new data and bss sizes and optional new entry point.
* No one actually uses bss_start and entry, but tradition compels
* one to support them.
* Could complain if bss_start > Brk, but the caller is *supposed* to know
* what she is doing.
*/
nhdr.a_data = (bss_start ? bss_start : Brk) - N_DATADDR (nhdr);
nhdr.a_bss = bss_start ? Brk - bss_start : 0;
if (entry)
nhdr.a_entry = entry;
/*
* Write out the text segment with new header
* Dynamic executables are ZMAGIC with N_TXTOFF==0 and the header
* part of the text segment, but no need to rely on this.
* So write the TEXT first, then go back replace the header.
* Doing it in the other order is less general!
*/
lseek (new, N_TXTOFF (nhdr), L_SET);
write (new, old + N_TXTOFF (ohdr), N_TXTOFF (ohdr) + ohdr.a_text);
lseek (new, 0L, L_SET);
write (new, &nhdr, sizeof (nhdr));
/*
* Write out the head of the old data segment from the file not
* from core, this has the unresolved __DYNAMIC relocation data
* we need to reload
*/
lseek (new, N_DATOFF (nhdr), L_SET);
write (new, old + N_DATOFF (ohdr), (int)&data_start - N_DATADDR (ohdr));
/*
* Copy the rest of the data from core
*/
write (new, &data_start, N_BSSADDR (nhdr) - (int)&data_start);
/*
* Copy the symbol table and line numbers
*/
lseek (new, N_TRELOFF (nhdr), L_SET);
write (new, old + N_TRELOFF (ohdr), stat.st_size - N_TRELOFF (ohdr));
fchmod (new, 0755);
}
void
run_time_remap (progname)
char *progname;
{
char aout[MAXPATHLEN];
register char *path, *p;
/* Just in case */
if (!initialized)
return;
/* Restore the break */
brk (Brk);
/* If nothing to remap: we are done! */
if (rd_only_len == 0)
return;
/*
* Attempt to find the executable
* First try argv[0], will almost always succeed as shells tend to give
* the full path from the hash list rather than using execvp ()
*/
if (is_it (progname))
return;
/*
* If argv[0] is a full path and does not exist, not much sense in
* searching further
*/
if (strchr (progname, '/'))
return;
/*
* Try to search for argv[0] on the PATH
*/
path = getenv ("PATH");
if (path == NULL)
return;
while (*path)
{
/* copy through ':' or end */
for (p = aout; *p = *path; ++p, ++path)
if (*p == ':')
{
++path; /* move past ':' */
break;
}
*p++ = '/';
strcpy (p, progname);
/*
* aout is a candidate full path name
*/
if (is_it (aout))
return;
}
}
is_it (path)
char *path;
{
int fd;
long paths_cookie;
struct exec hdr;
/*
* Open an executable and check for a valid header!
* Can't bcmp() the header with what we had, it may have been stripped!
* so we may save looking at non executables with the same name, mostly
* directories.
*/
fd = open (path, O_RDONLY);
if (fd != -1)
{
if (read (fd, &hdr, sizeof (hdr)) == sizeof (hdr)
&& !N_BADMAG (hdr) && N_DATOFF (hdr) == N_DATOFF (nhdr)
&& N_TRELOFF (hdr) == N_TRELOFF (nhdr))
{
/* compare cookies */
lseek (fd, N_DATOFF (hdr) + (int)&cookie - N_DATADDR (hdr), L_SET);
read (fd, &paths_cookie, sizeof (paths_cookie));
if (paths_cookie == cookie)
{ /* Eureka */
/*
* Do the mapping
* The PROT_EXEC may not be needed, but it is safer this way.
* should the shared library decide to indirect through
* addresses in the data segment not part of __DYNAMIC
*/
mmap (data_start, rd_only_len, PROT_READ | PROT_EXEC,
MAP_SHARED | MAP_FIXED, fd,
N_DATOFF (hdr) + data_start - N_DATADDR (hdr));
close (fd);
return 1;
}
}
close (fd);
}
return 0;
}

View file

@ -1,369 +0,0 @@
/*
Copyright (c) 1984, Taiichi Yuasa and Masami Hagiya.
Copyright (c) 1990, Giuseppe Attardi.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
See file '../Copyright' for full details.
*/
/*
unixsave.c
*/
#include "config.h"
#include "page.h"
#include "objff.h"
#include <sys/file.h>
#ifdef COFF
# define a_text tsize
# define a_data dsize
# define a_bss bsize
#endif
#ifdef apollo
# define SEGSIZ 65536
#endif
#ifdef IBMRT
# define PAGE_SIZE 2048
#endif
#ifdef SEQ
# define SEGSIZ 2048
#endif
#ifdef TAHOE
# define SEGSIZ 1024
#endif
#ifdef VAX
# define PAGE_SIZE 1024
# define SEGSIZ 1024
#endif
#ifndef TXTRELOC
# define TXTRELOC 0
#endif
filecpy(FILE *to, FILE *from, register int n)
{
char buffer[BUFSIZ];
while (n > BUFSIZ) {
fread(buffer, BUFSIZ, 1, from);
fwrite(buffer, BUFSIZ, 1, to);
n -= BUFSIZ;
}
if (n > 0) {
fread(buffer, 1, n, from);
fwrite(buffer, 1, n, to);
}
}
#define ADJUST(field) if (field) field += diff
unexec(char *save_file, char *original_file,
unsigned data_start, unsigned bss_start, unsigned entry_address)
{
#ifdef AOUT
struct exec header;
#endif AOUT
#ifdef COFF
FILHDR fileheader;
AOUTHDR header;
SCNHDR sectionheader;
long diff, text_scnptr;
#endif COFF
char *data_begin;
int text_size, data_size, bss_size, str_size, data_padding;
FILE *original, *save, *standard_error;
register int n;
register char *p;
extern char stdin_buf[BUFSIZ], stdout_buf[BUFSIZ];
_cleanup();
original = freopen(original_file, OPEN_R, stdin);
if (stdin != original || fileno(original) != 0) {
fprintf(stderr, "Can't open the original file.\n");
exit(1);
}
setbuf(original, stdin_buf);
#ifndef apollo
/* not unlinking the previous executable is a trick since I dont know
how to create a file whose type is COFF (rather then unstruct) */
unlink(save_file);
#endif apollo
#ifdef MSDOS
save = fopen(save_file, OPEN_W);
#else
save = freopen(save_file, OPEN_W, stdout);
#endif
chmod(save_file, 0775);
setbuf(save, stdout_buf); /* avoid malloc call by fwrite */
/* ---------------------------------------------------------------------- */
#ifdef AOUT
/* ---------------------------------------------------------------------- */
# if defined(VAX) || defined(NEWS) || defined(SEQ) || defined(TAHOE)
# define N_DATADDR(hdr) ((TXTRELOC + hdr.a_text+(SEGSIZ-1)) & ~(SEGSIZ-1))
# elif defined(IBMRT)
# define N_DATADDR(hdr) (TXTRELOC + hdr.a_text);
# elif defined(hp9000s300)
# define N_DATADDR(hdr) ((hdr.a_magic.file_type == SHARE_MAGIC || \
hdr.a_magic.file_type == DEMAND_MAGIC) ? \
EXEC_ALIGN(hdr.a_text) : hdr.a_text);
# endif
n = 3; /* section count */
fread(&header, sizeof(header), 1, original);
data_begin = (char *)N_DATADDR(header);
text_size = N_DATOFF(header) - N_TXTOFF(header);
data_size = header.a_data;
bss_size = header.a_bss;
/* The file generated will have:
1. updated header;
2. same text section as original;
3. data section dumped from memory;
4. bss section empty;
5. syms, trel and drel sections as original;
6. strings as original.
*/
/* Update header before writing */
header.a_data = data_end - data_begin;
# if defined(__linux__) || defined(__EMX__)
data_padding = SEGMENT_SIZE - header.a_data % SEGMENT_SIZE;
header.a_data += data_padding;
# endif
header.a_bss = 0;
fwrite(&header, sizeof(header), 1, save);
# if defined(__linux__) || defined(__EMX__)
if (N_MAGIC(header) == QMAGIC)
filecpy(save, original, text_size - sizeof(header));
else
filecpy(save, original, text_size + _N_HDROFF(header));
# elif defined(MSDOS)
filecpy(save, original, text_size);
# elif defined(SEQ)
filecpy(save, original, header.a_text -
N_ADDRADJ(header) - sizeof(header));
# elif defined(hp9000s300)
if (header.a_magic.file_type == DEMAND_MAGIC) {
filecpy(save, original, EXEC_PAGESIZE - sizeof(header));
filecpy(save, original, EXEC_ALIGN(header.a_text));}
else
filecpy(save, original, header.a_text);
# elif defined(vax) || defined(NEWS) || defined(IBMRT)
if (N_MAGIC(header) == ZMAGIC)
filecpy(save, original, PAGE_SIZE - sizeof(header));
filecpy(save, original, header.a_text);
# elif defined(BSD)
filecpy(save, original, header.a_text - sizeof(header));
# endif
#endif AOUT
/* ---------------------------------------------------------------------- */
#ifdef COFF
/* ---------------------------------------------------------------------- */
n = 0; /* section count */
fread(&fileheader, sizeof(fileheader), 1, original);
fread(&header, sizeof(header), 1, original);
data_begin = (char *)header.data_start;
# ifdef apollo
data_begin += FILHSZ + sizeof(header)
+ fileheader.f_nscns * sizeof(struct scnhdr);
# endif apollo
data_size = header.a_data;
header.a_data = data_end - data_begin;
diff = header.a_data - data_size;
fileheader.f_symptr += diff;
fwrite(&fileheader, sizeof(fileheader), 1, save);
header.a_bss = 0;
# ifdef apollo
header.o_sri += diff;
header.o_inlib += diff;
# endif apollo
# ifdef __mips
header.bss_start = header.data_start + header.a_data;
/* tsize includes headers which are also loaded into memory */
# endif __mips
fwrite(&header, sizeof(header), 1, save);
/* .text */
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
text_scnptr = sectionheader.s_scnptr;
ADJUST(sectionheader.s_relptr);
ADJUST(sectionheader.s_lnnoptr);
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
# ifdef apollo
/* .unwind */
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
ADJUST(sectionheader.s_relptr);
ADJUST(sectionheader.s_lnnoptr);
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
/* .aptv */
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
ADJUST(sectionheader.s_relptr);
ADJUST(sectionheader.s_lnnoptr);
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
# endif apollo
# ifdef ECOFF
/* .init */
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
/* .data */
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
/* .rdata */
# else
/* .data */
# endif ECOFF
fread(&sectionheader, sizeof(sectionheader), 1, original);
n++;
sectionheader.s_size += diff;
# ifdef apollo
/* the APTV at the beginning of data section has already
been relocated at first initialization.
Avoid doing it again.
*/
sectionheader.s_nreloc = 0;
# endif apollo
ADJUST(sectionheader.s_relptr);
ADJUST(sectionheader.s_lnnoptr);
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
/* copy all remaining section headers */
for (; n < fileheader.f_nscns; n++) {
fread(&sectionheader, sizeof(sectionheader), 1, original);
if (strcmp(sectionheader.s_name, ".bss") == 0) {
sectionheader.s_size = header.a_bss;
ADJUST(sectionheader.s_paddr);
ADJUST(sectionheader.s_vaddr);
}
ADJUST(sectionheader.s_scnptr);
ADJUST(sectionheader.s_relptr);
ADJUST(sectionheader.s_lnnoptr);
fwrite(&sectionheader, sizeof(sectionheader), 1, save);
}
/* copy the text section */
text_size = header.a_text;
# ifdef MSDOS
# define SECTION_ALIGNMENT 1023
# define ADJUST_TEXT_SCNHDR_SIZE
# endif
# ifdef SECTION_ALIGNMENT
/* Some systems require special alignment
of the sections in the file itself. */
text_size = (text_size + SECTION_ALIGNMENT) & ~SECTION_ALIGNMENT;
# endif
# ifdef ADJUST_TEXT_SCNHDR_SIZE
/* On some machines, `text size' includes all headers. */
text_size -= FILHSZ + AOUTSZ + SCNHSZ * fileheader.f_nscns;
# endif
filecpy(save, original, text_size);
#endif COFF
/* ---------------------------------------------------------------------- */
/* write the new data section */
#if defined(__linux__) || defined(__EMX__)
/* The heap starts at a SEGMENT_SIZE boundary */
for (n = data_size + bss_size, p = data_begin; n > BUFSIZ ;
n -= BUFSIZ, p += BUFSIZ)
fwrite(p, BUFSIZ, 1, save);
if (n > 0)
fwrite(p, 1, n, save);
n = SEGMENT_SIZE - (data_size + bss_size) % SEGMENT_SIZE;
/* write 0's to fill gap */
{ int j; char pad[512];
for (j = n; j > 512 ; j -= 512)
fwrite(&pad, 512, 1, save);
if (j > 0)
fwrite(&pad, 1, j, save);
}
header.a_data -= data_size + bss_size + n + data_padding;
data_begin += data_size + bss_size + n;
#endif
for (n = header.a_data, p = data_begin; n > BUFSIZ ;
n -= BUFSIZ, p += BUFSIZ)
fwrite(p, BUFSIZ, 1, save);
if (n > 0)
fwrite(p, 1, n, save);
#if defined(__linux__) || defined(__EMX__)
/* pad data section up to SEGMENT_SIZE */
{ int j; char pad[512];
for (j = data_padding; j > 512 ; j -= 512)
fwrite(&pad, 512, 1, save);
if (j > 0)
fwrite(&pad, 1, j, save);
}
#endif __EMX__
/* skip data section of original file */
fseek(original, data_size, 1);
#ifdef hpux
fseek(save, MODCAL_OFFSET(header), 0);
header.a_data = data_size;
fseek(original, MODCAL_OFFSET(header), 0);
#endif hpux
#ifdef ECOFF
{ HDRR symhdr;
/* copy up to Symbol Table */
filecpy(save, original, N_SYMOFF(fileheader) - ftell(original));
/* update Symbol Table Header */
fread(&symhdr, cbHDRR, 1, original);
ADJUST(symhdr.cbLineOffset);
ADJUST(symhdr.cbDnOffset);
ADJUST(symhdr.cbPdOffset);
ADJUST(symhdr.cbSymOffset);
ADJUST(symhdr.cbOptOffset);
ADJUST(symhdr.cbAuxOffset);
ADJUST(symhdr.cbSsOffset);
ADJUST(symhdr.cbSsExtOffset);
ADJUST(symhdr.cbFdOffset);
ADJUST(symhdr.cbRfdOffset);
ADJUST(symhdr.cbExtOffset);
fwrite(&symhdr, cbHDRR, 1, save);
}
#endif ECOFF
/* Copy the rest */
filecpy(save, original, file_len(original) - ftell(original));
fclose(original);
fclose(save);
}